基于模块化设计的图神经网络预测苦味

Yi He, Kaifeng Liu, Yuyang Liu, Weiwei Han
{"title":"基于模块化设计的图神经网络预测苦味","authors":"Yi He, Kaifeng Liu, Yuyang Liu, Weiwei Han","doi":"10.1093/bioadv/vbae041","DOIUrl":null,"url":null,"abstract":"Abstract Motivation Bitterness plays a pivotal role in our ability to identify and evade harmful substances in food. As one of the five tastes, it constitutes a critical component of our sensory experiences. However, the reliance on human tasting for discerning flavors presents cost challenges, rendering in silico prediction of bitterness a more practical alternative. Results In this study, we introduce the use of Graph Neural Networks (GNNs) in bitterness prediction, superseding traditional machine learning techniques. We developed an advanced model, a Hybrid Graph Neural Network (HGNN), surpassing conventional GNNs according to tests on public datasets. Using HGNN and three other GNNs, we designed BitterGNNs, a bitterness predictor that achieved an AUC value of 0.87 in both external bitter/non-bitter and bitter/sweet evaluations, outperforming the acclaimed RDKFP-MLP predictor with AUC values of 0.86 and 0.85. We further created a bitterness prediction website and database, TastePD (https://www.tastepd.com/). The BitterGNNs predictor, built on GNNs, offers accurate bitterness predictions, enhancing the efficacy of bitterness prediction, aiding advanced food testing methodology development, and deepening our understanding of bitterness origins. Availability and implementation TastePD can be available at https://www.tastepd.com, all codes are at https://github.com/heyigacu/BitterGNN.","PeriodicalId":505477,"journal":{"name":"Bioinformatics Advances","volume":"154 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of bitterness based on modular designed graph neural network\",\"authors\":\"Yi He, Kaifeng Liu, Yuyang Liu, Weiwei Han\",\"doi\":\"10.1093/bioadv/vbae041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivation Bitterness plays a pivotal role in our ability to identify and evade harmful substances in food. As one of the five tastes, it constitutes a critical component of our sensory experiences. However, the reliance on human tasting for discerning flavors presents cost challenges, rendering in silico prediction of bitterness a more practical alternative. Results In this study, we introduce the use of Graph Neural Networks (GNNs) in bitterness prediction, superseding traditional machine learning techniques. We developed an advanced model, a Hybrid Graph Neural Network (HGNN), surpassing conventional GNNs according to tests on public datasets. Using HGNN and three other GNNs, we designed BitterGNNs, a bitterness predictor that achieved an AUC value of 0.87 in both external bitter/non-bitter and bitter/sweet evaluations, outperforming the acclaimed RDKFP-MLP predictor with AUC values of 0.86 and 0.85. We further created a bitterness prediction website and database, TastePD (https://www.tastepd.com/). The BitterGNNs predictor, built on GNNs, offers accurate bitterness predictions, enhancing the efficacy of bitterness prediction, aiding advanced food testing methodology development, and deepening our understanding of bitterness origins. Availability and implementation TastePD can be available at https://www.tastepd.com, all codes are at https://github.com/heyigacu/BitterGNN.\",\"PeriodicalId\":505477,\"journal\":{\"name\":\"Bioinformatics Advances\",\"volume\":\"154 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究动机 苦味对我们识别和规避食物中有害物质的能力起着关键作用。作为五种味道之一,它是我们感官体验的重要组成部分。然而,依赖人类的品尝来辨别味道会带来成本上的挑战,因此对苦味进行硅学预测是一种更实用的替代方法。结果 在本研究中,我们介绍了图神经网络(GNN)在苦味预测中的应用,它取代了传统的机器学习技术。我们开发了一种先进的模型--混合图神经网络(HGNN),根据对公共数据集的测试,它超越了传统的图神经网络。利用 HGNN 和其他三种 GNN,我们设计了 BitterGNNs,这是一种苦味预测器,在外部苦味/非苦味和苦味/甜味评估中的 AUC 值均达到了 0.87,超过了 AUC 值分别为 0.86 和 0.85 的广受赞誉的 RDKFP-MLP 预测器。我们还创建了一个苦味预测网站和数据库 TastePD(https://www.tastepd.com/)。建立在 GNNs 基础上的 BitterGNNs 预测器可提供准确的苦味预测,从而提高苦味预测的效率,帮助开发先进的食品测试方法,并加深我们对苦味起源的了解。可用性和实施 TastePD 可从 https://www.tastepd.com 获取,所有代码可从 https://github.com/heyigacu/BitterGNN 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of bitterness based on modular designed graph neural network
Abstract Motivation Bitterness plays a pivotal role in our ability to identify and evade harmful substances in food. As one of the five tastes, it constitutes a critical component of our sensory experiences. However, the reliance on human tasting for discerning flavors presents cost challenges, rendering in silico prediction of bitterness a more practical alternative. Results In this study, we introduce the use of Graph Neural Networks (GNNs) in bitterness prediction, superseding traditional machine learning techniques. We developed an advanced model, a Hybrid Graph Neural Network (HGNN), surpassing conventional GNNs according to tests on public datasets. Using HGNN and three other GNNs, we designed BitterGNNs, a bitterness predictor that achieved an AUC value of 0.87 in both external bitter/non-bitter and bitter/sweet evaluations, outperforming the acclaimed RDKFP-MLP predictor with AUC values of 0.86 and 0.85. We further created a bitterness prediction website and database, TastePD (https://www.tastepd.com/). The BitterGNNs predictor, built on GNNs, offers accurate bitterness predictions, enhancing the efficacy of bitterness prediction, aiding advanced food testing methodology development, and deepening our understanding of bitterness origins. Availability and implementation TastePD can be available at https://www.tastepd.com, all codes are at https://github.com/heyigacu/BitterGNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信