用 Spearman Copula 对具有依赖性的扩散驱动 Erlang (2) 风险模型中的毁灭指标进行量化。

François Xavier Ouedraogo, Delwendé Abdoul Kabir Kafando, Frédéric Béré, Pierre Clovis Nitiéma
{"title":"用 Spearman Copula 对具有依赖性的扩散驱动 Erlang (2) 风险模型中的毁灭指标进行量化。","authors":"François Xavier Ouedraogo, Delwendé Abdoul Kabir Kafando, Frédéric Béré, Pierre Clovis Nitiéma","doi":"10.34257/ljrsvol24is4pg1","DOIUrl":null,"url":null,"abstract":"This paper focuses on the perturbation of an Erlang (2) risk model by a diffusion process, challenging the assumption of independence between claim amounts and inter claim durations. To account for a tail dependency structure, we introduce the Spearman copula, enabling the evaluation of Gerber-Shiu functions and ruin probabilities associated with this model. Our analysis delves into the Laplace transforms of the discounted penalty function and the probability of ruin. Towards the conclusion, explicit expressions are derived, accompanied by numerical examples illustrating ruin probabilities for individual claim sizes with exponential distributions.","PeriodicalId":502460,"journal":{"name":"Global Journal of Science Frontier Research","volume":" 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Ruin Metrics in a Diffusion-Driven Erlang (2) Risk Model with Dependency Modeled using the Spearman Copula.\",\"authors\":\"François Xavier Ouedraogo, Delwendé Abdoul Kabir Kafando, Frédéric Béré, Pierre Clovis Nitiéma\",\"doi\":\"10.34257/ljrsvol24is4pg1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the perturbation of an Erlang (2) risk model by a diffusion process, challenging the assumption of independence between claim amounts and inter claim durations. To account for a tail dependency structure, we introduce the Spearman copula, enabling the evaluation of Gerber-Shiu functions and ruin probabilities associated with this model. Our analysis delves into the Laplace transforms of the discounted penalty function and the probability of ruin. Towards the conclusion, explicit expressions are derived, accompanied by numerical examples illustrating ruin probabilities for individual claim sizes with exponential distributions.\",\"PeriodicalId\":502460,\"journal\":{\"name\":\"Global Journal of Science Frontier Research\",\"volume\":\" 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Science Frontier Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/ljrsvol24is4pg1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/ljrsvol24is4pg1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是通过扩散过程对 Erlang (2) 风险模型进行扰动,挑战索赔金额和索赔持续时间之间的独立性假设。为了考虑尾部依赖结构,我们引入了 Spearman copula,从而能够评估与该模型相关的 Gerber-Shiu 函数和毁坏概率。我们的分析深入到贴现惩罚函数和毁损概率的拉普拉斯变换。最后,我们推导出了明确的表达式,并通过数字示例说明了指数分布的单个索赔额的毁损概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Ruin Metrics in a Diffusion-Driven Erlang (2) Risk Model with Dependency Modeled using the Spearman Copula.
This paper focuses on the perturbation of an Erlang (2) risk model by a diffusion process, challenging the assumption of independence between claim amounts and inter claim durations. To account for a tail dependency structure, we introduce the Spearman copula, enabling the evaluation of Gerber-Shiu functions and ruin probabilities associated with this model. Our analysis delves into the Laplace transforms of the discounted penalty function and the probability of ruin. Towards the conclusion, explicit expressions are derived, accompanied by numerical examples illustrating ruin probabilities for individual claim sizes with exponential distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信