线性半线性微分方程的指数二分法和不变流形

Viet Duoc Trinh, Huy Nguyen Ngoc
{"title":"线性半线性微分方程的指数二分法和不变流形","authors":"Viet Duoc Trinh, Huy Nguyen Ngoc","doi":"10.24193/subbmath.2024.1.09","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the homogeneous linear differential equation vi(t) = A(t)v(t) and the semi-linear differential equation vi(t) = A(t)v(t) + g(t, v(t)) in Banach space X, in which A : R → L(X) is a strongly continuous function, g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we characterize the exponential dichotomy of the associated evolution family with the homogeneous linear differential equation by space pair (E, E∞), this is a Perron type result. Applying the achieved results, we establish the robustness of exponential dichotomy. The next we show the existence of stable and unstable manifolds for the semi-linear differential equation and prove that each a fiber of these manifolds is differentiable submanifold of class C1.\nMathematics Subject Classification (2010): 34C45, 34D09, 34D10.\nReceived 14 June 2021; Accepted 09 September 2022","PeriodicalId":517948,"journal":{"name":"Studia Universitatis Babes-Bolyai Matematica","volume":" 94","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential dichotomy and invariant manifolds of semi-linear differential equations on the line\",\"authors\":\"Viet Duoc Trinh, Huy Nguyen Ngoc\",\"doi\":\"10.24193/subbmath.2024.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the homogeneous linear differential equation vi(t) = A(t)v(t) and the semi-linear differential equation vi(t) = A(t)v(t) + g(t, v(t)) in Banach space X, in which A : R → L(X) is a strongly continuous function, g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we characterize the exponential dichotomy of the associated evolution family with the homogeneous linear differential equation by space pair (E, E∞), this is a Perron type result. Applying the achieved results, we establish the robustness of exponential dichotomy. The next we show the existence of stable and unstable manifolds for the semi-linear differential equation and prove that each a fiber of these manifolds is differentiable submanifold of class C1.\\nMathematics Subject Classification (2010): 34C45, 34D09, 34D10.\\nReceived 14 June 2021; Accepted 09 September 2022\",\"PeriodicalId\":517948,\"journal\":{\"name\":\"Studia Universitatis Babes-Bolyai Matematica\",\"volume\":\" 94\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis Babes-Bolyai Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2024.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2024.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了巴拿赫空间 X 中的同质线性微分方程 vi(t) = A(t)v(t) 和半线性微分方程 vi(t) = A(t)v(t) + g(t,v(t)),其中 A : R → L(X) 是强连续函数,g :R × X → X 是连续的,且满足 j-Lipschitz 条件。首先,我们通过空间对(E, E∞)描述了与同质线性微分方程相关的演化族的指数二分法,这是一个 Perron 类型的结果。应用已取得的结果,我们建立了指数二分法的稳健性。接下来,我们证明了半线性微分方程的稳定流形和不稳定流形的存在,并证明这些流形的每个纤维都是C1类的可微分子流形:34C45, 34D09, 34D10.2021 年 6 月 14 日收到;2022 年 9 月 9 日接受
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential dichotomy and invariant manifolds of semi-linear differential equations on the line
In this paper we investigate the homogeneous linear differential equation vi(t) = A(t)v(t) and the semi-linear differential equation vi(t) = A(t)v(t) + g(t, v(t)) in Banach space X, in which A : R → L(X) is a strongly continuous function, g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we characterize the exponential dichotomy of the associated evolution family with the homogeneous linear differential equation by space pair (E, E∞), this is a Perron type result. Applying the achieved results, we establish the robustness of exponential dichotomy. The next we show the existence of stable and unstable manifolds for the semi-linear differential equation and prove that each a fiber of these manifolds is differentiable submanifold of class C1. Mathematics Subject Classification (2010): 34C45, 34D09, 34D10. Received 14 June 2021; Accepted 09 September 2022
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信