平面曲线的波利亚 f 曲率

M. Crășmăreanu, G. Pripoae
{"title":"平面曲线的波利亚 f 曲率","authors":"M. Crășmăreanu, G. Pripoae","doi":"10.24193/subbmath.2024.1.14","DOIUrl":null,"url":null,"abstract":"We introduce and study a new curvature function for plane curves inspired by the weighted mean curvature of M. Gromov. We call it Pólya, being the difference between the usual curvature and the inner product of the normal vector field with the Pólya vector field of a given planar function f. We computed it for several examples, since the general problem of vanishing or constant values of this new curvature involves the general expression of f.\nMathematics Subject Classification (2010): 53A04, 53A45, 53A55.\nReceived 03 May 2023; Accepted 17 January 2024","PeriodicalId":517948,"journal":{"name":"Studia Universitatis Babes-Bolyai Matematica","volume":" 55","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Polya f-curvature of plane curves\",\"authors\":\"M. Crășmăreanu, G. Pripoae\",\"doi\":\"10.24193/subbmath.2024.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a new curvature function for plane curves inspired by the weighted mean curvature of M. Gromov. We call it Pólya, being the difference between the usual curvature and the inner product of the normal vector field with the Pólya vector field of a given planar function f. We computed it for several examples, since the general problem of vanishing or constant values of this new curvature involves the general expression of f.\\nMathematics Subject Classification (2010): 53A04, 53A45, 53A55.\\nReceived 03 May 2023; Accepted 17 January 2024\",\"PeriodicalId\":517948,\"journal\":{\"name\":\"Studia Universitatis Babes-Bolyai Matematica\",\"volume\":\" 55\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis Babes-Bolyai Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2024.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2024.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受格罗莫夫(M. Gromov)的加权平均曲率启发,我们引入并研究了一种新的平面曲线曲率函数。我们将其称为 Pólya,即通常曲率与给定平面函数 f 的法向量场与 Pólya 向量场的内积之间的差值。我们对几个例子进行了计算,因为这种新曲率的消失或恒定值的一般问题涉及 f 的一般表达式:53A04, 53A45, 53A55.2023 年 5 月 3 日收到;2024 年 1 月 17 日接受
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Polya f-curvature of plane curves
We introduce and study a new curvature function for plane curves inspired by the weighted mean curvature of M. Gromov. We call it Pólya, being the difference between the usual curvature and the inner product of the normal vector field with the Pólya vector field of a given planar function f. We computed it for several examples, since the general problem of vanishing or constant values of this new curvature involves the general expression of f. Mathematics Subject Classification (2010): 53A04, 53A45, 53A55. Received 03 May 2023; Accepted 17 January 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信