室内可见光通信系统中光伏电池集成的小信号建模和参数提取方法

Q4 Engineering
Diego Mattos, Vitoria Monteiro, P. D. de Aguirre, Lucas Severo, Alessandro Girardi
{"title":"室内可见光通信系统中光伏电池集成的小信号建模和参数提取方法","authors":"Diego Mattos, Vitoria Monteiro, P. D. de Aguirre, Lucas Severo, Alessandro Girardi","doi":"10.29292/jics.v19i1.763","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) cells are being adopted as a viable and cost-effective option for implementing receivers within Visible Light Communication (VLC) systems, primarily in indoor environments. Accurately estimating the generated current and voltage of the PV cell based on incident light is crucial when designing VLC systems.For this assessment, the 1D2R electrical equivalent model, which incorporates a diode and two resistors, is employed.In AC small signal analysis, the diode is substituted by its dynamic counterpart, which comprises a dynamic resistance in parallel with an equivalent capacitance. This study introduces an approach to measure and characterize the small-signal parameters of a PV cell operating at the maximum power point (MPP), open circuit (OC), and short circuit (SC) bias points. This is achieved through a closed-loop frequency response system, calibrated to encompass illuminance levels ranging from 50 to 500 lux.The procedure for estimating the AC response of the PV cell is outlined, and the outcomes are subsequently employed in an analytical parameter extraction methodology. Experimental results from a 20 x 40 mm PV cell reveal that MPP represents the least favorable bias point in terms of bandwidth, whereas the SC bias point exhibits the most favorable performance. This observation validates the hypothesis that the optimal bias point for energy harvesting in PV cells is the worst bias point for communication purposes.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-Signal Modeling and Parameter Extraction Method for Photovoltaic Cell Integration in Indoor Visible Light Communication Systems\",\"authors\":\"Diego Mattos, Vitoria Monteiro, P. D. de Aguirre, Lucas Severo, Alessandro Girardi\",\"doi\":\"10.29292/jics.v19i1.763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) cells are being adopted as a viable and cost-effective option for implementing receivers within Visible Light Communication (VLC) systems, primarily in indoor environments. Accurately estimating the generated current and voltage of the PV cell based on incident light is crucial when designing VLC systems.For this assessment, the 1D2R electrical equivalent model, which incorporates a diode and two resistors, is employed.In AC small signal analysis, the diode is substituted by its dynamic counterpart, which comprises a dynamic resistance in parallel with an equivalent capacitance. This study introduces an approach to measure and characterize the small-signal parameters of a PV cell operating at the maximum power point (MPP), open circuit (OC), and short circuit (SC) bias points. This is achieved through a closed-loop frequency response system, calibrated to encompass illuminance levels ranging from 50 to 500 lux.The procedure for estimating the AC response of the PV cell is outlined, and the outcomes are subsequently employed in an analytical parameter extraction methodology. Experimental results from a 20 x 40 mm PV cell reveal that MPP represents the least favorable bias point in terms of bandwidth, whereas the SC bias point exhibits the most favorable performance. This observation validates the hypothesis that the optimal bias point for energy harvesting in PV cells is the worst bias point for communication purposes.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v19i1.763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v19i1.763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)电池是在可见光通信(VLC)系统(主要是室内环境)中实施接收器的一种可行且具有成本效益的选择。在交流小信号分析中,二极管由其动态对应物代替,后者包括一个与等效电容并联的动态电阻。本研究介绍了一种测量和表征光伏电池在最大功率点 (MPP)、开路 (OC) 和短路 (SC) 偏置点工作时的小信号参数的方法。该方法是通过一个闭环频率响应系统实现的,该系统经过校准,可涵盖 50 至 500 勒克斯的照度水平。20 x 40 毫米光伏电池的实验结果表明,就带宽而言,MPP 是最不利的偏置点,而 SC 偏置点则表现出最有利的性能。这一观察结果验证了一个假设,即光伏电池能量收集的最佳偏置点是通信方面最差的偏置点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small-Signal Modeling and Parameter Extraction Method for Photovoltaic Cell Integration in Indoor Visible Light Communication Systems
Photovoltaic (PV) cells are being adopted as a viable and cost-effective option for implementing receivers within Visible Light Communication (VLC) systems, primarily in indoor environments. Accurately estimating the generated current and voltage of the PV cell based on incident light is crucial when designing VLC systems.For this assessment, the 1D2R electrical equivalent model, which incorporates a diode and two resistors, is employed.In AC small signal analysis, the diode is substituted by its dynamic counterpart, which comprises a dynamic resistance in parallel with an equivalent capacitance. This study introduces an approach to measure and characterize the small-signal parameters of a PV cell operating at the maximum power point (MPP), open circuit (OC), and short circuit (SC) bias points. This is achieved through a closed-loop frequency response system, calibrated to encompass illuminance levels ranging from 50 to 500 lux.The procedure for estimating the AC response of the PV cell is outlined, and the outcomes are subsequently employed in an analytical parameter extraction methodology. Experimental results from a 20 x 40 mm PV cell reveal that MPP represents the least favorable bias point in terms of bandwidth, whereas the SC bias point exhibits the most favorable performance. This observation validates the hypothesis that the optimal bias point for energy harvesting in PV cells is the worst bias point for communication purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信