Michael Aristidou, Philip R. Brown, George Chailos
{"title":"Z 上八分子环中的幂等元素和零点元素","authors":"Michael Aristidou, Philip R. Brown, George Chailos","doi":"10.24193/subbmath.2024.1.01","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the set O/Zp, where p is a prime number, does not form a skew field and discuss idempotent and nilpotent elements in the (finite) ring O/Zp. We provide examples and establish conditions for idempotency\nand nilpotency.\nMathematics Subject Classification (2010): 15A33, 15A30, 20H25, 15A03.\nReceived 27 July 2021; Accepted 14 December 2021\n","PeriodicalId":517948,"journal":{"name":"Studia Universitatis Babes-Bolyai Matematica","volume":" 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idempotent and nilpotent elements in octonion rings over Z\",\"authors\":\"Michael Aristidou, Philip R. Brown, George Chailos\",\"doi\":\"10.24193/subbmath.2024.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the set O/Zp, where p is a prime number, does not form a skew field and discuss idempotent and nilpotent elements in the (finite) ring O/Zp. We provide examples and establish conditions for idempotency\\nand nilpotency.\\nMathematics Subject Classification (2010): 15A33, 15A30, 20H25, 15A03.\\nReceived 27 July 2021; Accepted 14 December 2021\\n\",\"PeriodicalId\":517948,\"journal\":{\"name\":\"Studia Universitatis Babes-Bolyai Matematica\",\"volume\":\" 39\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis Babes-Bolyai Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2024.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2024.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Idempotent and nilpotent elements in octonion rings over Z
In this paper, we show that the set O/Zp, where p is a prime number, does not form a skew field and discuss idempotent and nilpotent elements in the (finite) ring O/Zp. We provide examples and establish conditions for idempotency
and nilpotency.
Mathematics Subject Classification (2010): 15A33, 15A30, 20H25, 15A03.
Received 27 July 2021; Accepted 14 December 2021