具有无约束中性系数的三阶半规范微分方程的振荡标准

Karunamurthy Saranya, V. Piramanantham, E. Thandapani, E. Tunç
{"title":"具有无约束中性系数的三阶半规范微分方程的振荡标准","authors":"Karunamurthy Saranya, V. Piramanantham, E. Thandapani, E. Tunç","doi":"10.24193/subbmath.2024.1.08","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the oscillatory behavior of solutions to a class of third-order differential equations of the form Lz(t) + f (t)yβ (σ(t)) = 0, where Lz(t) = (p(t)(q(t)zt(t))t)t is a semi-canonical operator and z(t) = y(t) + g(t)y(τ (t)). The main idea is to convert the semi-canonical operator into canonical form and then obtain some new sufficient conditions for the oscillation of all solutions. The obtained results essentially improve and complement to the known results. Examples are provided to illustrate the main results.\nMathematics Subject Classification (2010): 34C10, 34K11, 34K40.\nReceived 19 September 2021; Accepted 20 January 2022","PeriodicalId":517948,"journal":{"name":"Studia Universitatis Babes-Bolyai Matematica","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation criteria for third-order semi-canonical differential equations with unbounded neutral coefficients\",\"authors\":\"Karunamurthy Saranya, V. Piramanantham, E. Thandapani, E. Tunç\",\"doi\":\"10.24193/subbmath.2024.1.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the oscillatory behavior of solutions to a class of third-order differential equations of the form Lz(t) + f (t)yβ (σ(t)) = 0, where Lz(t) = (p(t)(q(t)zt(t))t)t is a semi-canonical operator and z(t) = y(t) + g(t)y(τ (t)). The main idea is to convert the semi-canonical operator into canonical form and then obtain some new sufficient conditions for the oscillation of all solutions. The obtained results essentially improve and complement to the known results. Examples are provided to illustrate the main results.\\nMathematics Subject Classification (2010): 34C10, 34K11, 34K40.\\nReceived 19 September 2021; Accepted 20 January 2022\",\"PeriodicalId\":517948,\"journal\":{\"name\":\"Studia Universitatis Babes-Bolyai Matematica\",\"volume\":\" 36\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis Babes-Bolyai Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2024.1.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2024.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类三阶微分方程解的振荡行为,其形式为 Lz(t) + f (t)yβ (σ(t)) = 0,其中 Lz(t) = (p(t)(q(t)zt(t))t)t 是半规范算子,z(t) = y(t) + g(t)y(τ (t))。主要思路是将半规范算子转换为规范形式,然后为所有解的振荡获得一些新的充分条件。所获得的结果本质上是对已知结果的改进和补充。数学学科分类(2010):34C10, 34K11, 34K40.2021 年 9 月 19 日收到;2022 年 1 月 20 日接受
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation criteria for third-order semi-canonical differential equations with unbounded neutral coefficients
In this paper, we investigate the oscillatory behavior of solutions to a class of third-order differential equations of the form Lz(t) + f (t)yβ (σ(t)) = 0, where Lz(t) = (p(t)(q(t)zt(t))t)t is a semi-canonical operator and z(t) = y(t) + g(t)y(τ (t)). The main idea is to convert the semi-canonical operator into canonical form and then obtain some new sufficient conditions for the oscillation of all solutions. The obtained results essentially improve and complement to the known results. Examples are provided to illustrate the main results. Mathematics Subject Classification (2010): 34C10, 34K11, 34K40. Received 19 September 2021; Accepted 20 January 2022
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信