{"title":"驻车制动杆和棘轮的有限元分析与拓扑优化","authors":"Funda Kahraman, Mehmet Küçük","doi":"10.2339/politeknik.1325468","DOIUrl":null,"url":null,"abstract":"Topology optimization is known as one of the basic categories of structural optimization. Topology optimization is received increasing attention in many engineering disciplines. Topology optimization contributes to minimizing emissions and environmental effects by increasing material utilization efficiency and manufacturing sustainability. The mechanical parking brake is still used in many vehicles. This study aims to contribute to the reduction in vehicle weight by applying topology optimization. In addition, it also purposes to promote sustainability in manufacturing by reducing material usage and energy consumption. A CAD model was created by considering the existing mechanism element dimensions. The parking brake lever mechanism component was evaluated using topology optimization and finite element analysis methods. Static analyses were performed using a finite element analysis program. The results of this analysis were used as input data for topology optimization. In the topology optimization, the response constraint mass was increased by 5 increments from 50% to 95%. As a result, the maximum equivalent (von Mises) stress for the parking brake lever is 230,29 MPa, and for the ratchet is 11,559 MPa. The maximum total deformation value for the brake lever is 0,95853 mm and for the ratchet is 0,0079482 mm. The parking brake lever mass decreased by 18,48% from 0.27751 kg to 0.22622 kg. The ratchet mass decreased from 0.095042 kg to 0.061911 kg by 34.85%.","PeriodicalId":16884,"journal":{"name":"Journal of Polytechnic","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet\",\"authors\":\"Funda Kahraman, Mehmet Küçük\",\"doi\":\"10.2339/politeknik.1325468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topology optimization is known as one of the basic categories of structural optimization. Topology optimization is received increasing attention in many engineering disciplines. Topology optimization contributes to minimizing emissions and environmental effects by increasing material utilization efficiency and manufacturing sustainability. The mechanical parking brake is still used in many vehicles. This study aims to contribute to the reduction in vehicle weight by applying topology optimization. In addition, it also purposes to promote sustainability in manufacturing by reducing material usage and energy consumption. A CAD model was created by considering the existing mechanism element dimensions. The parking brake lever mechanism component was evaluated using topology optimization and finite element analysis methods. Static analyses were performed using a finite element analysis program. The results of this analysis were used as input data for topology optimization. In the topology optimization, the response constraint mass was increased by 5 increments from 50% to 95%. As a result, the maximum equivalent (von Mises) stress for the parking brake lever is 230,29 MPa, and for the ratchet is 11,559 MPa. The maximum total deformation value for the brake lever is 0,95853 mm and for the ratchet is 0,0079482 mm. The parking brake lever mass decreased by 18,48% from 0.27751 kg to 0.22622 kg. The ratchet mass decreased from 0.095042 kg to 0.061911 kg by 34.85%.\",\"PeriodicalId\":16884,\"journal\":{\"name\":\"Journal of Polytechnic\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polytechnic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2339/politeknik.1325468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polytechnic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2339/politeknik.1325468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet
Topology optimization is known as one of the basic categories of structural optimization. Topology optimization is received increasing attention in many engineering disciplines. Topology optimization contributes to minimizing emissions and environmental effects by increasing material utilization efficiency and manufacturing sustainability. The mechanical parking brake is still used in many vehicles. This study aims to contribute to the reduction in vehicle weight by applying topology optimization. In addition, it also purposes to promote sustainability in manufacturing by reducing material usage and energy consumption. A CAD model was created by considering the existing mechanism element dimensions. The parking brake lever mechanism component was evaluated using topology optimization and finite element analysis methods. Static analyses were performed using a finite element analysis program. The results of this analysis were used as input data for topology optimization. In the topology optimization, the response constraint mass was increased by 5 increments from 50% to 95%. As a result, the maximum equivalent (von Mises) stress for the parking brake lever is 230,29 MPa, and for the ratchet is 11,559 MPa. The maximum total deformation value for the brake lever is 0,95853 mm and for the ratchet is 0,0079482 mm. The parking brake lever mass decreased by 18,48% from 0.27751 kg to 0.22622 kg. The ratchet mass decreased from 0.095042 kg to 0.061911 kg by 34.85%.