具有正元素的分支连续分数的收敛集和对扰动的相对稳定性

V.R. Hladun, D.I. Bodnar, R.S. Rusyn
{"title":"具有正元素的分支连续分数的收敛集和对扰动的相对稳定性","authors":"V.R. Hladun, D.I. Bodnar, R.S. Rusyn","doi":"10.15330/cmp.16.1.16-31","DOIUrl":null,"url":null,"abstract":"In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \\[\\Omega_0 = ( {0,\\mu _0^{(2)}} ] \\times [ {\\nu _0^{(1)}, + \\infty } ),\\quad \\Omega _{i(k)}=[ {\\mu _k^{(1)},\\mu _k^{(2)}} ] \\times [ {\\nu _k^{(1)},\\nu _k^{(2)}} ],\\]\\[i(k) \\in {I_k}, \\quad k = 1,2,\\ldots,\\] where $\\nu _0^{(1)}>0,$ $0 < \\mu _k^{(1)} < \\mu _k^{(2)},$ $0 < \\nu _k^{(1)} < \\nu _k^{(2)},$ $k = 1,2,\\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \\[\\frac{a_0}{b_0}{\\atop+}\\sum_{i_1=1}^N\\frac{a_{i(1)}}{b_{i(1)}}{\\atop+}\\sum_{i_2=1}^N\\frac{a_{i(2)}}{b_{i(2)}}{\\atop+}\\ldots{\\atop+} \\sum_{i_k=1}^N\\frac{a_{i(k)}}{b_{i(k)}}{\\atop+}\\ldots\\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\\mu _k^{(j)},$ $\\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\\Omega _{i(k)}} = ( {0,{\\mu _k}} ] \\times [ {{\\nu _k}, + \\infty } )$, $i(k) \\in {I_k}$, $k = 0,1,\\ldots,$ where ${\\mu _k} > 0$, ${\\nu _k} > 0$, $k = 0,1,\\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\\mu _k,$ $\\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction.","PeriodicalId":502864,"journal":{"name":"Carpathian Mathematical Publications","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements\",\"authors\":\"V.R. Hladun, D.I. Bodnar, R.S. Rusyn\",\"doi\":\"10.15330/cmp.16.1.16-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \\\\[\\\\Omega_0 = ( {0,\\\\mu _0^{(2)}} ] \\\\times [ {\\\\nu _0^{(1)}, + \\\\infty } ),\\\\quad \\\\Omega _{i(k)}=[ {\\\\mu _k^{(1)},\\\\mu _k^{(2)}} ] \\\\times [ {\\\\nu _k^{(1)},\\\\nu _k^{(2)}} ],\\\\]\\\\[i(k) \\\\in {I_k}, \\\\quad k = 1,2,\\\\ldots,\\\\] where $\\\\nu _0^{(1)}>0,$ $0 < \\\\mu _k^{(1)} < \\\\mu _k^{(2)},$ $0 < \\\\nu _k^{(1)} < \\\\nu _k^{(2)},$ $k = 1,2,\\\\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \\\\[\\\\frac{a_0}{b_0}{\\\\atop+}\\\\sum_{i_1=1}^N\\\\frac{a_{i(1)}}{b_{i(1)}}{\\\\atop+}\\\\sum_{i_2=1}^N\\\\frac{a_{i(2)}}{b_{i(2)}}{\\\\atop+}\\\\ldots{\\\\atop+} \\\\sum_{i_k=1}^N\\\\frac{a_{i(k)}}{b_{i(k)}}{\\\\atop+}\\\\ldots\\\\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\\\\mu _k^{(j)},$ $\\\\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\\\\Omega _{i(k)}} = ( {0,{\\\\mu _k}} ] \\\\times [ {{\\\\nu _k}, + \\\\infty } )$, $i(k) \\\\in {I_k}$, $k = 0,1,\\\\ldots,$ where ${\\\\mu _k} > 0$, ${\\\\nu _k} > 0$, $k = 0,1,\\\\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\\\\mu _k,$ $\\\\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction.\",\"PeriodicalId\":502864,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.16.1.16-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.16.1.16-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了具有正元素和固定分支数的分支连续分数的收敛性和对扰动的相对稳定性问题。元素集 [ (Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)}, + \infty } ] 的条件是),\quad \Omega _{i(k)}=[ {\mu _k^{(1)},\mu _k^{(2)}} ] \times [ {nnu _k^{(1)},\nnu _k^{(2)}} ],\]\[i(k) \in {I_k}, \quad k = 1、2,\ldots,\] 其中 $\nu _0^{(1)}>0,$ $0 < \mu _k^{(1)} < \mu _k^{(2)},$ $0 < \nu _k^{(1)} < \nu _k^{(2)},$ $k = 1,2,\ldots、$ 是一系列收敛和相对稳定的分支续分数扰动的集合序列\[\frac{a_0}{b_0}{\atop+}\sum_{i_1=1}^N\frac{a_{i(1)}}{b_{i(1)}}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{b_{i(2)}}{\atop+}\ldots{\atop+}\sum_{i_k=1}^N\frac{a_{i(k)}}{b_{i(k)}}{\atop+}ldots\] 已经建立。所得到的条件要求序列的有界性或收敛性,其成员取决于值 $\mu _k^{(j)},$$\nu _k^{(j)},$$j=1,2.$ If the sets of elements of the branched continued fraction are sets ${Omega _{i(k)}} = ( {0,{\mu _k}} ] \times [ {{\nu _k}, + \infty } )$, $i(k) \in {I_k}$, $k = 0,1,\ldots,$ where ${\mu _k}> 0$, ${\nu _k}> 0$,$k = 0,1,\ldots,$ 那么对扰动的收敛性和稳定性条件是通过其项取决于 $\mu _k,$\nu _k 值的数列的收敛性来制定的。$ 如果分数偶数层的部分分母受到短缺的扰动,奇数层的部分分母受到过剩的扰动,即部分分母的相对误差在符号上交替变化,那么支化续分数相对抗扰动的条件也就成立了。在所有情况下,我们都得到了因支化续分数元素扰动而产生的近似值相对误差的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements
In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)}, + \infty } ),\quad \Omega _{i(k)}=[ {\mu _k^{(1)},\mu _k^{(2)}} ] \times [ {\nu _k^{(1)},\nu _k^{(2)}} ],\]\[i(k) \in {I_k}, \quad k = 1,2,\ldots,\] where $\nu _0^{(1)}>0,$ $0 < \mu _k^{(1)} < \mu _k^{(2)},$ $0 < \nu _k^{(1)} < \nu _k^{(2)},$ $k = 1,2,\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \[\frac{a_0}{b_0}{\atop+}\sum_{i_1=1}^N\frac{a_{i(1)}}{b_{i(1)}}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{b_{i(2)}}{\atop+}\ldots{\atop+} \sum_{i_k=1}^N\frac{a_{i(k)}}{b_{i(k)}}{\atop+}\ldots\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\mu _k^{(j)},$ $\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\Omega _{i(k)}} = ( {0,{\mu _k}} ] \times [ {{\nu _k}, + \infty } )$, $i(k) \in {I_k}$, $k = 0,1,\ldots,$ where ${\mu _k} > 0$, ${\nu _k} > 0$, $k = 0,1,\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\mu _k,$ $\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信