{"title":"对用于检测汽车转向外拉杆故障的振动分析进行研究","authors":"Yousif Alaraji, Sina Alp","doi":"10.21014/actaimeko.v13i1.1742","DOIUrl":null,"url":null,"abstract":"This study presents a novel fault detection method in car gear steering systems, employing MSC Adams and MATLAB simulations to analyze angular acceleration from the outer tie rod. The approach closely mimics real accelerometer data to differentiate between normal and faulty conditions, including wear and obstacle navigation. Emphasis is on noise robustness, utilizing advanced noise injection and denoising techniques. The efficacy of wavelet scattering, discrete wavelet transform (DWT) methods, and classifiers like Support Vector Machines (SVM) and Neural Networks (NN) is extensively evaluated. Among fifteen fault detection methods, the combination of wavelet scattering with Long Short-Term Memory (LSTM) Neural Networks, optimized with Adam tuning, is notably stable across four scenarios. The research highlights the importance of precise feature selection, employing techniques like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE). This research significantly advances the reliability of autonomous driving systems and provides essential insights into fault detection in gear steering systems.","PeriodicalId":37987,"journal":{"name":"Acta IMEKO","volume":" 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"investigation into vibration analysis for detecting faults in vehicle steering outer tie-rod\",\"authors\":\"Yousif Alaraji, Sina Alp\",\"doi\":\"10.21014/actaimeko.v13i1.1742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel fault detection method in car gear steering systems, employing MSC Adams and MATLAB simulations to analyze angular acceleration from the outer tie rod. The approach closely mimics real accelerometer data to differentiate between normal and faulty conditions, including wear and obstacle navigation. Emphasis is on noise robustness, utilizing advanced noise injection and denoising techniques. The efficacy of wavelet scattering, discrete wavelet transform (DWT) methods, and classifiers like Support Vector Machines (SVM) and Neural Networks (NN) is extensively evaluated. Among fifteen fault detection methods, the combination of wavelet scattering with Long Short-Term Memory (LSTM) Neural Networks, optimized with Adam tuning, is notably stable across four scenarios. The research highlights the importance of precise feature selection, employing techniques like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE). This research significantly advances the reliability of autonomous driving systems and provides essential insights into fault detection in gear steering systems.\",\"PeriodicalId\":37987,\"journal\":{\"name\":\"Acta IMEKO\",\"volume\":\" 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta IMEKO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21014/actaimeko.v13i1.1742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta IMEKO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21014/actaimeko.v13i1.1742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
investigation into vibration analysis for detecting faults in vehicle steering outer tie-rod
This study presents a novel fault detection method in car gear steering systems, employing MSC Adams and MATLAB simulations to analyze angular acceleration from the outer tie rod. The approach closely mimics real accelerometer data to differentiate between normal and faulty conditions, including wear and obstacle navigation. Emphasis is on noise robustness, utilizing advanced noise injection and denoising techniques. The efficacy of wavelet scattering, discrete wavelet transform (DWT) methods, and classifiers like Support Vector Machines (SVM) and Neural Networks (NN) is extensively evaluated. Among fifteen fault detection methods, the combination of wavelet scattering with Long Short-Term Memory (LSTM) Neural Networks, optimized with Adam tuning, is notably stable across four scenarios. The research highlights the importance of precise feature selection, employing techniques like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE). This research significantly advances the reliability of autonomous driving systems and provides essential insights into fault detection in gear steering systems.
期刊介绍:
The main goal of this journal is the enhancement of academic activities of IMEKO and a wider dissemination of scientific output from IMEKO TC events. High-quality papers presented at IMEKO conferences, workshops or congresses are seleted by the event organizers and the authors are invited to publish an enhanced version of their paper in this journal. The journal also publishes scientific articles on measurement and instrumentation not related to an IMEKO event.