具有给定系数符号和简单实数根的实数单变量多项式

Q3 Mathematics
V. MatematychniStudii., No 61, V. P. Kostov
{"title":"具有给定系数符号和简单实数根的实数单变量多项式","authors":"V. MatematychniStudii., No 61, V. P. Kostov","doi":"10.30970/ms.61.1.22-34","DOIUrl":null,"url":null,"abstract":"We continue the study of different aspects of Descartes' rule of signs and discuss the connectedness of the sets of real degree $d$ univariate monic polynomials (i.~e. with leading coefficient $1$) with given numbers $\\ell ^+$ and $\\ell ^-$ of positive and negative real roots and given signs of the coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That is, we consider the space $\\mathcal{P}^d:=\\{ P:=x^d+a_1x^{d-1}+\\dots +a_d\\}$, $a_j\\in \\mathbb{R}^*=\\mathbb{R}\\setminus \\{ 0\\}$, the corresponding sign patterns $\\sigma=(\\sigma_1,\\sigma_2,\\dots, \\sigma_d)$, where $\\sigma_j=$sign$(a_j)$, and the sets $\\mathcal{P}^d_{\\sigma ,(\\ell ^+,\\ell ^-)}\\subset \\mathcal{P}^d$ of polynomials with given triples $(\\sigma ,(\\ell ^+,\\ell ^-))$.We prove that for degree $d\\leq 5$, all such sets are connected or empty. Most of the connected sets are contractible, i.~e. able to be reduced to one of their points by continuous deformation. Empty are exactly the sets with $d=4$, $\\sigma =(-,-,-,+)$, $\\ell^+=0$, $\\ell ^-=2$, with $d=5$, $\\sigma =(-,-,-,-,+)$, $\\ell^+=0$, $\\ell ^-=3$, and the ones obtained from them under the $\\mathbb{Z}_2\\times \\mathbb{Z}_2$-actiondefined on the set of degree $d$ monic polynomials by its two generators which are two commuting  involutions: $i_m\\colon P(x)\\mapsto (-1)^dP(-x)$ and $i_r\\colon P(x)\\mapsto x^dP(1/x)/P(0)$. We show that for arbitrary $d$, two following sets are contractible:1) the set of degree $d$ real monic polynomials having all coefficients positive and with exactly $n$ complex  conjugate pairs of roots ($2n\\leq d$);2) for $1\\leq s\\leq d$, the set of real degree $d$ monic polynomials with exactly $n$ conjugate pairs ($2n\\leq d$) whose first $s$ coefficients are positive and the next $d+1-s$ ones are negative.For any degree $d\\geq 6$, we give an example of a set $\\mathcal{P}^d_{\\sigma ,(\\ell^+,\\ell^-)}$  having $\\Lambda (d)$ connected compo\\-nents, where $\\Lambda (d)\\rightarrow \\infty$ as $d\\rightarrow \\infty$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real univariate polynomials with given signs of coefficients and simple real roots\",\"authors\":\"V. MatematychniStudii., No 61, V. P. Kostov\",\"doi\":\"10.30970/ms.61.1.22-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study of different aspects of Descartes' rule of signs and discuss the connectedness of the sets of real degree $d$ univariate monic polynomials (i.~e. with leading coefficient $1$) with given numbers $\\\\ell ^+$ and $\\\\ell ^-$ of positive and negative real roots and given signs of the coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That is, we consider the space $\\\\mathcal{P}^d:=\\\\{ P:=x^d+a_1x^{d-1}+\\\\dots +a_d\\\\}$, $a_j\\\\in \\\\mathbb{R}^*=\\\\mathbb{R}\\\\setminus \\\\{ 0\\\\}$, the corresponding sign patterns $\\\\sigma=(\\\\sigma_1,\\\\sigma_2,\\\\dots, \\\\sigma_d)$, where $\\\\sigma_j=$sign$(a_j)$, and the sets $\\\\mathcal{P}^d_{\\\\sigma ,(\\\\ell ^+,\\\\ell ^-)}\\\\subset \\\\mathcal{P}^d$ of polynomials with given triples $(\\\\sigma ,(\\\\ell ^+,\\\\ell ^-))$.We prove that for degree $d\\\\leq 5$, all such sets are connected or empty. Most of the connected sets are contractible, i.~e. able to be reduced to one of their points by continuous deformation. Empty are exactly the sets with $d=4$, $\\\\sigma =(-,-,-,+)$, $\\\\ell^+=0$, $\\\\ell ^-=2$, with $d=5$, $\\\\sigma =(-,-,-,-,+)$, $\\\\ell^+=0$, $\\\\ell ^-=3$, and the ones obtained from them under the $\\\\mathbb{Z}_2\\\\times \\\\mathbb{Z}_2$-actiondefined on the set of degree $d$ monic polynomials by its two generators which are two commuting  involutions: $i_m\\\\colon P(x)\\\\mapsto (-1)^dP(-x)$ and $i_r\\\\colon P(x)\\\\mapsto x^dP(1/x)/P(0)$. We show that for arbitrary $d$, two following sets are contractible:1) the set of degree $d$ real monic polynomials having all coefficients positive and with exactly $n$ complex  conjugate pairs of roots ($2n\\\\leq d$);2) for $1\\\\leq s\\\\leq d$, the set of real degree $d$ monic polynomials with exactly $n$ conjugate pairs ($2n\\\\leq d$) whose first $s$ coefficients are positive and the next $d+1-s$ ones are negative.For any degree $d\\\\geq 6$, we give an example of a set $\\\\mathcal{P}^d_{\\\\sigma ,(\\\\ell^+,\\\\ell^-)}$  having $\\\\Lambda (d)$ connected compo\\\\-nents, where $\\\\Lambda (d)\\\\rightarrow \\\\infty$ as $d\\\\rightarrow \\\\infty$.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.61.1.22-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.61.1.22-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们继续研究笛卡尔符号规则的不同方面,讨论实数度 $d$ 单变量一元多项式(即前导系数为 $1$)的集合的连通性,这些集合具有给定数 $\ell ^+$ 和 $\ell ^-$ 的正实根和负实根,以及给定的系数符号;实根假定都是简单的,系数假定都是非范数。也就是说,我们考虑的空间是 $\mathcal{P}^d:=\{ P:=x^d+a_1x^{d-1}+\dots +a_d\}$, $a_j\in \mathbb{R}^*=\mathbb{R}\setminus \{ 0\}$, 相应的符号模式 $\sigma=(\sigma_1,\sigma_2,\dots,\sigma_d)$、其中 $\sigma_j=$sign$(a_j)$, 以及具有给定三元组 $(\sigma ,(\ell ^+,\ell ^-))$ 的多项式的集合 $\mathcal{P}^d_{sigma ,(\ell ^+,\ell ^-)} 子集 \mathcal{P}^d$.我们证明,对于度数 $d\leq 5$,所有这样的集合都是连通的或空的。大多数连通集合是可收缩的,即能够通过连续变形还原为其中一点。空集恰恰是具有 $d=4$,$\sigma =(-,-,-,+)$,$\ell^+=0$,$\ell ^-=2$,具有 $d=5$,$\sigma =(-,-,-,-,+)$,$\ell^+=0$,$\ell ^-=3$的集合、以及它们在$\mathbb{Z}_2\times \mathbb{Z}_2$-action下得到的结果,该action定义在阶数为$d$的一元多项式集合上,其两个生成器是两个交换渐开线:$i_m\colon P(x)\mapsto (-1)^dP(-x)$ 和 $i_r\colon P(x)\mapsto x^dP(1/x)/P(0)$.我们证明,对于任意的 $d$,以下两个集合是可收缩的:1)所有系数都为正且有恰好 $n$ 复共轭根对(2n\leq d$)的度为 $d$ 的实数一元多项式集合;2)对于 $1\leq s\leq d$,有恰好 $n$ 共轭根对(2n\leq d$)的度为 $d$ 的实数一元多项式集合,其前 $s$ 系数为正,后 $d+1-s$ 系数为负。对于任意的度 $d\geq 6$,我们举例说明一个集合 $\mathcal{P}^d_{\sigma ,(\ell^+,\ell^-)}$ 具有 $\Lambda (d)$ 连接成分,其中 $\Lambda (d)\rightarrow \infty$ 为 $d\rightarrow \infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real univariate polynomials with given signs of coefficients and simple real roots
We continue the study of different aspects of Descartes' rule of signs and discuss the connectedness of the sets of real degree $d$ univariate monic polynomials (i.~e. with leading coefficient $1$) with given numbers $\ell ^+$ and $\ell ^-$ of positive and negative real roots and given signs of the coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That is, we consider the space $\mathcal{P}^d:=\{ P:=x^d+a_1x^{d-1}+\dots +a_d\}$, $a_j\in \mathbb{R}^*=\mathbb{R}\setminus \{ 0\}$, the corresponding sign patterns $\sigma=(\sigma_1,\sigma_2,\dots, \sigma_d)$, where $\sigma_j=$sign$(a_j)$, and the sets $\mathcal{P}^d_{\sigma ,(\ell ^+,\ell ^-)}\subset \mathcal{P}^d$ of polynomials with given triples $(\sigma ,(\ell ^+,\ell ^-))$.We prove that for degree $d\leq 5$, all such sets are connected or empty. Most of the connected sets are contractible, i.~e. able to be reduced to one of their points by continuous deformation. Empty are exactly the sets with $d=4$, $\sigma =(-,-,-,+)$, $\ell^+=0$, $\ell ^-=2$, with $d=5$, $\sigma =(-,-,-,-,+)$, $\ell^+=0$, $\ell ^-=3$, and the ones obtained from them under the $\mathbb{Z}_2\times \mathbb{Z}_2$-actiondefined on the set of degree $d$ monic polynomials by its two generators which are two commuting  involutions: $i_m\colon P(x)\mapsto (-1)^dP(-x)$ and $i_r\colon P(x)\mapsto x^dP(1/x)/P(0)$. We show that for arbitrary $d$, two following sets are contractible:1) the set of degree $d$ real monic polynomials having all coefficients positive and with exactly $n$ complex  conjugate pairs of roots ($2n\leq d$);2) for $1\leq s\leq d$, the set of real degree $d$ monic polynomials with exactly $n$ conjugate pairs ($2n\leq d$) whose first $s$ coefficients are positive and the next $d+1-s$ ones are negative.For any degree $d\geq 6$, we give an example of a set $\mathcal{P}^d_{\sigma ,(\ell^+,\ell^-)}$  having $\Lambda (d)$ connected compo\-nents, where $\Lambda (d)\rightarrow \infty$ as $d\rightarrow \infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信