{"title":"聚合物材料增材制造的发展、前景和挑战","authors":"Ruixue Miao","doi":"10.62051/s182f353","DOIUrl":null,"url":null,"abstract":"As a manufacturing technology that fabricates three-dimensional objects by stacking materials layer by layer, additive manufacturing can be divided into laser fused deposition, electron beam fused deposition, inkjet printing and so on based on different additive manufacturing processes. In recent years, remarkable progress has been made in the additive manufacture of polymer materials. Firstly, the additive manufacturing equipment and process parameters suitable for polymer materials have been successfully developed, which realized the accurate manufacturing of complex structures. Secondly, by optimizing the formula and post-treatment of polymer materials, the performance and durability of additive products are improved. In addition, the researchers also explored the application potential of additive manufacturing of polymer materials in medical, aerospace and other fields. However, the additive manufacturing of polymer materials still faces some challenges. One of them is that the rheological properties of polymer materials have a great impact on the progress of additive manufacturing, which needs further research and improvement. Meanwhile, the heat and stress generated in additive manufacturing may lead to the deformation and degradation of polymer materials, which requires effective thermal management. Finally, compared with the traditional cutting process, the additive manufacturing cost of polymer materials is still high, so it is necessary to reduce the cost and promote production efficiency. In a word, additive manufacturing of polymer materials has broad prospects and application potential, but further research and improvement are still needed to overcome related challenges.","PeriodicalId":517926,"journal":{"name":"Transactions on Environment, Energy and Earth Sciences","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development, Prospect and Challenge for Additive Manufacturing of Polymer Materials\",\"authors\":\"Ruixue Miao\",\"doi\":\"10.62051/s182f353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a manufacturing technology that fabricates three-dimensional objects by stacking materials layer by layer, additive manufacturing can be divided into laser fused deposition, electron beam fused deposition, inkjet printing and so on based on different additive manufacturing processes. In recent years, remarkable progress has been made in the additive manufacture of polymer materials. Firstly, the additive manufacturing equipment and process parameters suitable for polymer materials have been successfully developed, which realized the accurate manufacturing of complex structures. Secondly, by optimizing the formula and post-treatment of polymer materials, the performance and durability of additive products are improved. In addition, the researchers also explored the application potential of additive manufacturing of polymer materials in medical, aerospace and other fields. However, the additive manufacturing of polymer materials still faces some challenges. One of them is that the rheological properties of polymer materials have a great impact on the progress of additive manufacturing, which needs further research and improvement. Meanwhile, the heat and stress generated in additive manufacturing may lead to the deformation and degradation of polymer materials, which requires effective thermal management. Finally, compared with the traditional cutting process, the additive manufacturing cost of polymer materials is still high, so it is necessary to reduce the cost and promote production efficiency. In a word, additive manufacturing of polymer materials has broad prospects and application potential, but further research and improvement are still needed to overcome related challenges.\",\"PeriodicalId\":517926,\"journal\":{\"name\":\"Transactions on Environment, Energy and Earth Sciences\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62051/s182f353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62051/s182f353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development, Prospect and Challenge for Additive Manufacturing of Polymer Materials
As a manufacturing technology that fabricates three-dimensional objects by stacking materials layer by layer, additive manufacturing can be divided into laser fused deposition, electron beam fused deposition, inkjet printing and so on based on different additive manufacturing processes. In recent years, remarkable progress has been made in the additive manufacture of polymer materials. Firstly, the additive manufacturing equipment and process parameters suitable for polymer materials have been successfully developed, which realized the accurate manufacturing of complex structures. Secondly, by optimizing the formula and post-treatment of polymer materials, the performance and durability of additive products are improved. In addition, the researchers also explored the application potential of additive manufacturing of polymer materials in medical, aerospace and other fields. However, the additive manufacturing of polymer materials still faces some challenges. One of them is that the rheological properties of polymer materials have a great impact on the progress of additive manufacturing, which needs further research and improvement. Meanwhile, the heat and stress generated in additive manufacturing may lead to the deformation and degradation of polymer materials, which requires effective thermal management. Finally, compared with the traditional cutting process, the additive manufacturing cost of polymer materials is still high, so it is necessary to reduce the cost and promote production efficiency. In a word, additive manufacturing of polymer materials has broad prospects and application potential, but further research and improvement are still needed to overcome related challenges.