几乎周期性分布和晶体测量

Q3 Mathematics
V. MatematychniStudii., No 61, S. Favorov
{"title":"几乎周期性分布和晶体测量","authors":"V. MatematychniStudii., No 61, S. Favorov","doi":"10.30970/ms.61.1.97-108","DOIUrl":null,"url":null,"abstract":"We study temperate distributions and measures with discrete support in Euclidean space and their Fourier transformswith special attention to almost periodic distributions. In particular, we prove that if distances between points of the support of a measure do not quickly approach 0 at infinity, then this measure is a Fourier quasicrystal (Theorem 1). \nWe also introduce a new class of almost periodicity of distributions,close to the previous one, and study its properties.Actually, we introduce the concept of s-almost periodicity of temperate distributions. We establish the conditions for a measure $\\mu$ to be s-almost periodic (Theorem 2), a connection between s-almost periodicityand usual almost periodicity of distributions (Theorem 3). We also prove that the Fourier transform of an almost periodic distribution with locally finite support is a measure (Theorem 4),and prove a necessary and sufficient condition on a locally finite set $E$ for each measure with support on $E$ to have s-almost periodic Fourier transform (Theorem 5).","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost periodic distributions and crystalline measures\",\"authors\":\"V. MatematychniStudii., No 61, S. Favorov\",\"doi\":\"10.30970/ms.61.1.97-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study temperate distributions and measures with discrete support in Euclidean space and their Fourier transformswith special attention to almost periodic distributions. In particular, we prove that if distances between points of the support of a measure do not quickly approach 0 at infinity, then this measure is a Fourier quasicrystal (Theorem 1). \\nWe also introduce a new class of almost periodicity of distributions,close to the previous one, and study its properties.Actually, we introduce the concept of s-almost periodicity of temperate distributions. We establish the conditions for a measure $\\\\mu$ to be s-almost periodic (Theorem 2), a connection between s-almost periodicityand usual almost periodicity of distributions (Theorem 3). We also prove that the Fourier transform of an almost periodic distribution with locally finite support is a measure (Theorem 4),and prove a necessary and sufficient condition on a locally finite set $E$ for each measure with support on $E$ to have s-almost periodic Fourier transform (Theorem 5).\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.61.1.97-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.61.1.97-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究欧几里得空间中具有离散支持的温带分布和度量及其傅里叶变换,并特别关注几乎周期性的分布。特别是,我们证明了如果一个度量的支持点之间的距离在无穷远处不会迅速接近 0,那么这个度量就是傅里叶准晶体(定理 1)。实际上,我们引入了温带分布的 s 近似周期性的概念。我们建立了一个度量 $\mu$ 几乎是 s-almost 周期性的条件(定理 2),以及 s-almost 周期性与通常分布的几乎周期性之间的联系(定理 3)。我们还证明了具有局部有限支持的几乎周期性分布的傅里叶变换是一种度量(定理 4),并证明了在局部有限集合 $E$ 上每个具有支持的度量具有 s 几乎周期性傅里叶变换的必要条件和充分条件(定理 5)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost periodic distributions and crystalline measures
We study temperate distributions and measures with discrete support in Euclidean space and their Fourier transformswith special attention to almost periodic distributions. In particular, we prove that if distances between points of the support of a measure do not quickly approach 0 at infinity, then this measure is a Fourier quasicrystal (Theorem 1). We also introduce a new class of almost periodicity of distributions,close to the previous one, and study its properties.Actually, we introduce the concept of s-almost periodicity of temperate distributions. We establish the conditions for a measure $\mu$ to be s-almost periodic (Theorem 2), a connection between s-almost periodicityand usual almost periodicity of distributions (Theorem 3). We also prove that the Fourier transform of an almost periodic distribution with locally finite support is a measure (Theorem 4),and prove a necessary and sufficient condition on a locally finite set $E$ for each measure with support on $E$ to have s-almost periodic Fourier transform (Theorem 5).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信