{"title":"利用先进的机器学习技术对工业旋转机械进行故障检测和分类","authors":"Divya Paikaray, Naveen Kumar Rajendran, Vaishali Singh, Pulkit Srivastava","doi":"10.24874/pes.si.24.02.008","DOIUrl":null,"url":null,"abstract":"The difficulty of fault identification as well as categorization in industrial rotating machinery is fixed by this study, which introduces a revolutionary Dandelion Optimized CatBoost (DO-CB) technique. The suggested framework makes use of the CB algorithm, which is enhanced by the DO method. The first step in the suggested DO-CB approach is gathering sensor data from rotating gear to record different operational settings. To ensure robustness, the recommended approach is developed on identified data and includes a variety of fault scenarios. Additionally, the Python tool used for identifying faults and classification is the basis for the implementation of the DO-CB approach. The experimental findings show how well the suggested method works to precisely identify and classify problems in industrial rotating gear. In comparison to benchmark defect detection techniques, the suggested DO-CB approach performs better, demonstrating its capacity to manage intricate patterns and fluctuations in the data.","PeriodicalId":33556,"journal":{"name":"Proceedings on Engineering Sciences","volume":" 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAULT DETECTION AND CATEGORIZATION USING AN ADVANCED MACHINE LEARNING TECHNIQUE FOR INDUSTRIAL ROTATIONAL MACHINERY\",\"authors\":\"Divya Paikaray, Naveen Kumar Rajendran, Vaishali Singh, Pulkit Srivastava\",\"doi\":\"10.24874/pes.si.24.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The difficulty of fault identification as well as categorization in industrial rotating machinery is fixed by this study, which introduces a revolutionary Dandelion Optimized CatBoost (DO-CB) technique. The suggested framework makes use of the CB algorithm, which is enhanced by the DO method. The first step in the suggested DO-CB approach is gathering sensor data from rotating gear to record different operational settings. To ensure robustness, the recommended approach is developed on identified data and includes a variety of fault scenarios. Additionally, the Python tool used for identifying faults and classification is the basis for the implementation of the DO-CB approach. The experimental findings show how well the suggested method works to precisely identify and classify problems in industrial rotating gear. In comparison to benchmark defect detection techniques, the suggested DO-CB approach performs better, demonstrating its capacity to manage intricate patterns and fluctuations in the data.\",\"PeriodicalId\":33556,\"journal\":{\"name\":\"Proceedings on Engineering Sciences\",\"volume\":\" 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/pes.si.24.02.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/pes.si.24.02.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
FAULT DETECTION AND CATEGORIZATION USING AN ADVANCED MACHINE LEARNING TECHNIQUE FOR INDUSTRIAL ROTATIONAL MACHINERY
The difficulty of fault identification as well as categorization in industrial rotating machinery is fixed by this study, which introduces a revolutionary Dandelion Optimized CatBoost (DO-CB) technique. The suggested framework makes use of the CB algorithm, which is enhanced by the DO method. The first step in the suggested DO-CB approach is gathering sensor data from rotating gear to record different operational settings. To ensure robustness, the recommended approach is developed on identified data and includes a variety of fault scenarios. Additionally, the Python tool used for identifying faults and classification is the basis for the implementation of the DO-CB approach. The experimental findings show how well the suggested method works to precisely identify and classify problems in industrial rotating gear. In comparison to benchmark defect detection techniques, the suggested DO-CB approach performs better, demonstrating its capacity to manage intricate patterns and fluctuations in the data.