克利福德代数在群论中的应用

Farooqhusain Inamdar, Hasan S. N.
{"title":"克利福德代数在群论中的应用","authors":"Farooqhusain Inamdar, Hasan S. N.","doi":"10.37256/cm.5220243921","DOIUrl":null,"url":null,"abstract":"The orthogonal operators defined as similarity transformations on Euclidean space E can also be considered as group actions on the Clifford Algebra. In this paper, we investigate the finite subgroup of Euclidian space E of Geometric Algebra over a finite dimension vector space E. The hierarchy of the finite subgroups of Clifford Algebra C(E) is depicted through the lattice structure and we discussed the group action of these subgroups on the vector space E. Further, we shall address the number of non-trivial finite subgroups, Normal subgroups, and subnormal series of the subgroup of Clifford Algebra C(E) constructed over the vector space E by performing group action  over the subgroup  of Clifford Algebra C(E).","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Clifford Algebra on Group Theory\",\"authors\":\"Farooqhusain Inamdar, Hasan S. N.\",\"doi\":\"10.37256/cm.5220243921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The orthogonal operators defined as similarity transformations on Euclidean space E can also be considered as group actions on the Clifford Algebra. In this paper, we investigate the finite subgroup of Euclidian space E of Geometric Algebra over a finite dimension vector space E. The hierarchy of the finite subgroups of Clifford Algebra C(E) is depicted through the lattice structure and we discussed the group action of these subgroups on the vector space E. Further, we shall address the number of non-trivial finite subgroups, Normal subgroups, and subnormal series of the subgroup of Clifford Algebra C(E) constructed over the vector space E by performing group action  over the subgroup  of Clifford Algebra C(E).\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5220243921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5220243921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定义为欧几里得空间 E 上相似性变换的正交算子也可视为克利福德代数上的群作用。本文研究了有限维向量空间 E 上几何代数欧几里得空间 E 的有限子群。我们通过网格结构描绘了克利福德代数 C(E) 有限子群的层次,并讨论了这些子群对向量空间 E 的群作用。此外,我们还将讨论通过对 Clifford Algebra C(E) 子群进行群作用,在向量空间 E 上构建的 Clifford Algebra C(E) 子群的非琐有限子群、正常子群和子正常数列的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Clifford Algebra on Group Theory
The orthogonal operators defined as similarity transformations on Euclidean space E can also be considered as group actions on the Clifford Algebra. In this paper, we investigate the finite subgroup of Euclidian space E of Geometric Algebra over a finite dimension vector space E. The hierarchy of the finite subgroups of Clifford Algebra C(E) is depicted through the lattice structure and we discussed the group action of these subgroups on the vector space E. Further, we shall address the number of non-trivial finite subgroups, Normal subgroups, and subnormal series of the subgroup of Clifford Algebra C(E) constructed over the vector space E by performing group action  over the subgroup  of Clifford Algebra C(E).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信