José Manuel Díaz-Rasero, B. Ledesma, María Alonso, Silvia Román
{"title":"用 HTC 对胡麻进行升级:改善燃烧特性","authors":"José Manuel Díaz-Rasero, B. Ledesma, María Alonso, Silvia Román","doi":"10.3390/fire7040106","DOIUrl":null,"url":null,"abstract":"This study investigated the fuel potential and combustion behavior of hydrochars derived from a unique precursor: Carthamus pomace. Initially, the hydrothermal carbonization process of this novel feedstock was examined across various temperature ranges (180–240 °C) and durations (15–180 min). The impact of these processing conditions was analyzed in terms of degradation mechanisms and their correlation with the resulting properties of the hydrochars (HCs) produced. Then, the combustion performance of these materials was studied by means of thermogravimetry, and the differences in reactivity and activation energy were analyzed and associated with preparation processes. Finally, the most promising HTC parameters were identified and a thermoeconomic study on the use of selected HCs on a thermal plant devoted to the production of electricity was evaluated including energy savings associated with the implementation of heat exchangers using the heat of the flue gases to partially supply the energy needs associated with HTC.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"111 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upgrading Carthamus by HTC: Improvement of Combustion Properties\",\"authors\":\"José Manuel Díaz-Rasero, B. Ledesma, María Alonso, Silvia Román\",\"doi\":\"10.3390/fire7040106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the fuel potential and combustion behavior of hydrochars derived from a unique precursor: Carthamus pomace. Initially, the hydrothermal carbonization process of this novel feedstock was examined across various temperature ranges (180–240 °C) and durations (15–180 min). The impact of these processing conditions was analyzed in terms of degradation mechanisms and their correlation with the resulting properties of the hydrochars (HCs) produced. Then, the combustion performance of these materials was studied by means of thermogravimetry, and the differences in reactivity and activation energy were analyzed and associated with preparation processes. Finally, the most promising HTC parameters were identified and a thermoeconomic study on the use of selected HCs on a thermal plant devoted to the production of electricity was evaluated including energy savings associated with the implementation of heat exchangers using the heat of the flue gases to partially supply the energy needs associated with HTC.\",\"PeriodicalId\":12279,\"journal\":{\"name\":\"Fire\",\"volume\":\"111 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fire7040106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upgrading Carthamus by HTC: Improvement of Combustion Properties
This study investigated the fuel potential and combustion behavior of hydrochars derived from a unique precursor: Carthamus pomace. Initially, the hydrothermal carbonization process of this novel feedstock was examined across various temperature ranges (180–240 °C) and durations (15–180 min). The impact of these processing conditions was analyzed in terms of degradation mechanisms and their correlation with the resulting properties of the hydrochars (HCs) produced. Then, the combustion performance of these materials was studied by means of thermogravimetry, and the differences in reactivity and activation energy were analyzed and associated with preparation processes. Finally, the most promising HTC parameters were identified and a thermoeconomic study on the use of selected HCs on a thermal plant devoted to the production of electricity was evaluated including energy savings associated with the implementation of heat exchangers using the heat of the flue gases to partially supply the energy needs associated with HTC.