利用印度地面原位观测数据了解太阳辐射的气候学和长期趋势

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
MAUSAM Pub Date : 2024-03-24 DOI:10.54302/mausam.v75i2.6238
B. L. SUDEEP KUMAR, Ranjan Phukan, Raja Boragapu, C. B. Nalage, A. D. Tathe, K. S. Hosalikar
{"title":"利用印度地面原位观测数据了解太阳辐射的气候学和长期趋势","authors":"B. L. SUDEEP KUMAR, Ranjan Phukan, Raja Boragapu, C. B. Nalage, A. D. Tathe, K. S. Hosalikar","doi":"10.54302/mausam.v75i2.6238","DOIUrl":null,"url":null,"abstract":"Understanding the variations of solar power potential over the country is essential for the optimum utilisation of solar energy in power generation, which demands accurate information of solar radiation and its variations. In the present study, we investigate the climatology and trends of global radiation (GR), diffuse radiation (DR), bright sunshine hours (BHS) and technical potential of solar power (Solar Photovoltaic potential; SPV potential) using in-situ data procured from India Meteorological Department for the period 1985-2019. GR is high (low) over the northwest and inland areas of peninsular (extreme north and northeast) India, whereas DR is high (low) over the coastal stations (extreme northern parts of the country). BHS is more (less) over northwest (north, northeast and southern peninsular) India. The country has SPV potential in the range of 1800-3400 Wm-2 with substantial regional variations. High (low) SPV potential is observed in the northwest regions (north, northeast and southern peninsular India). The GR and BHS (DR) have (has) a significant decreasing (increasing) trend in most parts of the country. However, the rate of decreasing (increasing) of GR (DR) has been weakened (strengthened) in the recent decade. The technical potential of solar power has a significant decreasing trend in most of the selected stations which is alarming. It necessitates the wide use of solar panels with better efficiency to meet the energy requirements from solar resources.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the climatology and long-term trends in solar radiation using ground based in-situ observations in India\",\"authors\":\"B. L. SUDEEP KUMAR, Ranjan Phukan, Raja Boragapu, C. B. Nalage, A. D. Tathe, K. S. Hosalikar\",\"doi\":\"10.54302/mausam.v75i2.6238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the variations of solar power potential over the country is essential for the optimum utilisation of solar energy in power generation, which demands accurate information of solar radiation and its variations. In the present study, we investigate the climatology and trends of global radiation (GR), diffuse radiation (DR), bright sunshine hours (BHS) and technical potential of solar power (Solar Photovoltaic potential; SPV potential) using in-situ data procured from India Meteorological Department for the period 1985-2019. GR is high (low) over the northwest and inland areas of peninsular (extreme north and northeast) India, whereas DR is high (low) over the coastal stations (extreme northern parts of the country). BHS is more (less) over northwest (north, northeast and southern peninsular) India. The country has SPV potential in the range of 1800-3400 Wm-2 with substantial regional variations. High (low) SPV potential is observed in the northwest regions (north, northeast and southern peninsular India). The GR and BHS (DR) have (has) a significant decreasing (increasing) trend in most parts of the country. However, the rate of decreasing (increasing) of GR (DR) has been weakened (strengthened) in the recent decade. The technical potential of solar power has a significant decreasing trend in most of the selected stations which is alarming. It necessitates the wide use of solar panels with better efficiency to meet the energy requirements from solar resources.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v75i2.6238\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v75i2.6238","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解全国太阳能发电潜力的变化对于在发电过程中优化利用太阳能至关重要,这需要准确的太阳辐射及其变化信息。在本研究中,我们利用从印度气象局获得的 1985-2019 年期间的原位数据,研究了全球辐射(GR)、漫射辐射(DR)、日照时数(BHS)和太阳能发电技术潜力(太阳能光伏发电潜力;SPV 潜力)的气候和趋势。印度西北部和半岛内陆地区(极北和东北部)的 GR 偏高(低),而沿海站点(印度极北地区)的 DR 偏高(低)。印度西北部(半岛北部、东北部和南部)的 BHS 偏多(偏少)。印度的 SPV 潜力在 1800-3400 Wm-2 之间,地区差异很大。西北部地区(印度北部、东北部和南部半岛)的 SPV 潜力较高(低)。印度大部分地区的 GR 和 BHS(DR)呈显著下降(上升)趋势。然而,近十年来,GR(DR)的下降(上升)速度有所减弱(增强)。在大多数选定的发电站,太阳能发电的技术潜力呈显著下降趋势,令人担忧。这就需要广泛使用效率更高的太阳能电池板,以满足太阳能资源的能源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the climatology and long-term trends in solar radiation using ground based in-situ observations in India
Understanding the variations of solar power potential over the country is essential for the optimum utilisation of solar energy in power generation, which demands accurate information of solar radiation and its variations. In the present study, we investigate the climatology and trends of global radiation (GR), diffuse radiation (DR), bright sunshine hours (BHS) and technical potential of solar power (Solar Photovoltaic potential; SPV potential) using in-situ data procured from India Meteorological Department for the period 1985-2019. GR is high (low) over the northwest and inland areas of peninsular (extreme north and northeast) India, whereas DR is high (low) over the coastal stations (extreme northern parts of the country). BHS is more (less) over northwest (north, northeast and southern peninsular) India. The country has SPV potential in the range of 1800-3400 Wm-2 with substantial regional variations. High (low) SPV potential is observed in the northwest regions (north, northeast and southern peninsular India). The GR and BHS (DR) have (has) a significant decreasing (increasing) trend in most parts of the country. However, the rate of decreasing (increasing) of GR (DR) has been weakened (strengthened) in the recent decade. The technical potential of solar power has a significant decreasing trend in most of the selected stations which is alarming. It necessitates the wide use of solar panels with better efficiency to meet the energy requirements from solar resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信