使用 FastText 检测印尼语在线新闻标题中的点击诱饵

Muhaza Liebenlito, Arlianis Arum Yesinta, Muhamad Irvan Septiar Musti
{"title":"使用 FastText 检测印尼语在线新闻标题中的点击诱饵","authors":"Muhaza Liebenlito, Arlianis Arum Yesinta, Muhamad Irvan Septiar Musti","doi":"10.52158/jacost.v5i1.655","DOIUrl":null,"url":null,"abstract":"The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%. \n ","PeriodicalId":151855,"journal":{"name":"Journal of Applied Computer Science and Technology","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText\",\"authors\":\"Muhaza Liebenlito, Arlianis Arum Yesinta, Muhamad Irvan Septiar Musti\",\"doi\":\"10.52158/jacost.v5i1.655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%. \\n \",\"PeriodicalId\":151855,\"journal\":{\"name\":\"Journal of Applied Computer Science and Technology\",\"volume\":\" 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52158/jacost.v5i1.655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52158/jacost.v5i1.655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着访问新闻门户网站的人越来越多,网络媒体之间为获取读者或访问者以实现收入最大化而展开了激烈的竞争。这就是点击诱饵发展的诱因。点击诱饵会降低新闻本身的质量,也有可能成为新闻内容的错误信息,即所谓的假新闻。因此,有必要检测包含点击诱饵的新闻标题。本研究旨在利用 FastText 获得最佳的点击诱饵新闻标题分类模型。要获得最佳模型,可以通过清理数据和优化模型的超参数来实现。该模型使用从印尼在线新闻中收集的 9600 个训练数据进行训练。本研究获得的最佳模型准确率为 77%,F1 分数为 69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信