理想化达里厄斯-萨沃纽斯组合式垂直轴风力涡轮机的性能分析

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jingna Pan, C. Ferreira, Alexander van van Zuijlen
{"title":"理想化达里厄斯-萨沃纽斯组合式垂直轴风力涡轮机的性能分析","authors":"Jingna Pan, C. Ferreira, Alexander van van Zuijlen","doi":"10.1002/we.2904","DOIUrl":null,"url":null,"abstract":"To investigate the effect of force distributions of each turbine component on the power performance of the Darrieus–Savonius combined vertical axis wind turbine (hybrid VAWT), the hybrid VAWT is modeled as idealized turbine under various force distributions. The goal of idealization is to simplify the intricate interactions between the Savonius and Darrieus components. The simulation actuator surfaces with uniform force distributions lead to a cost‐effective way to identify the optimal force distribution of each turbine component. The numerical model was validated against momentum theory. The results demonstrated that the numerical and theoretical results yield similar predictions in the low‐thrust cases but show differences in the high‐thrust cases. The maximum power coefficient of an idealized hybrid VAWT with given thrust coefficient is lower than that of a single actuator. This is a consequence of the nonoptimal loading on the actuator. The results indicate that an idealized hybrid VAWT does not show a significant power increase compared with an optimal single Darrieus rotor. Therefore, the presence of a Savonius rotor inside a Darrieus rotor leads to a lower power output in any circumstance. The hybrid configuration is primarily advantageous for the start‐up performance of the combined rotor, which is not explored in this study.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of an idealized Darrieus–Savonius combined vertical axis wind turbine\",\"authors\":\"Jingna Pan, C. Ferreira, Alexander van van Zuijlen\",\"doi\":\"10.1002/we.2904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the effect of force distributions of each turbine component on the power performance of the Darrieus–Savonius combined vertical axis wind turbine (hybrid VAWT), the hybrid VAWT is modeled as idealized turbine under various force distributions. The goal of idealization is to simplify the intricate interactions between the Savonius and Darrieus components. The simulation actuator surfaces with uniform force distributions lead to a cost‐effective way to identify the optimal force distribution of each turbine component. The numerical model was validated against momentum theory. The results demonstrated that the numerical and theoretical results yield similar predictions in the low‐thrust cases but show differences in the high‐thrust cases. The maximum power coefficient of an idealized hybrid VAWT with given thrust coefficient is lower than that of a single actuator. This is a consequence of the nonoptimal loading on the actuator. The results indicate that an idealized hybrid VAWT does not show a significant power increase compared with an optimal single Darrieus rotor. Therefore, the presence of a Savonius rotor inside a Darrieus rotor leads to a lower power output in any circumstance. The hybrid configuration is primarily advantageous for the start‐up performance of the combined rotor, which is not explored in this study.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2904\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2904","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了研究每个涡轮机部件的力分布对达里厄斯-萨伏尼斯组合垂直轴风力涡轮机(混合 VAWT)功率性能的影响,混合 VAWT 被模拟为各种力分布下的理想化涡轮机。理想化的目的是简化萨沃尼尔斯和达里厄斯组件之间错综复杂的相互作用。采用统一力分布的模拟致动器表面,可以经济有效地确定每个涡轮机部件的最佳力分布。数值模型与动量理论进行了验证。结果表明,数值结果与理论结果在低推力情况下的预测结果相似,但在高推力情况下则存在差异。具有给定推力系数的理想化混合 VAWT 的最大功率系数低于单一推杆。这是致动器非最佳负载的结果。结果表明,与最佳的单达里奥斯转子相比,理想化混合 VAWT 的功率并没有显著增加。因此,在任何情况下,达里厄斯转子内的萨沃尼乌斯转子都会导致较低的功率输出。混合配置主要有利于组合转子的启动性能,但本研究未对此进行探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of an idealized Darrieus–Savonius combined vertical axis wind turbine
To investigate the effect of force distributions of each turbine component on the power performance of the Darrieus–Savonius combined vertical axis wind turbine (hybrid VAWT), the hybrid VAWT is modeled as idealized turbine under various force distributions. The goal of idealization is to simplify the intricate interactions between the Savonius and Darrieus components. The simulation actuator surfaces with uniform force distributions lead to a cost‐effective way to identify the optimal force distribution of each turbine component. The numerical model was validated against momentum theory. The results demonstrated that the numerical and theoretical results yield similar predictions in the low‐thrust cases but show differences in the high‐thrust cases. The maximum power coefficient of an idealized hybrid VAWT with given thrust coefficient is lower than that of a single actuator. This is a consequence of the nonoptimal loading on the actuator. The results indicate that an idealized hybrid VAWT does not show a significant power increase compared with an optimal single Darrieus rotor. Therefore, the presence of a Savonius rotor inside a Darrieus rotor leads to a lower power output in any circumstance. The hybrid configuration is primarily advantageous for the start‐up performance of the combined rotor, which is not explored in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信