分析和计算几何不对称线圈对变压器杂散损耗的影响

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
I. A. Hernández-Robles, X. González-Ramírez, J. C. Olivares-Galvan, R. Escarela-Perez, R. Ocon-Valdez
{"title":"分析和计算几何不对称线圈对变压器杂散损耗的影响","authors":"I. A. Hernández-Robles, X. González-Ramírez, J. C. Olivares-Galvan, R. Escarela-Perez, R. Ocon-Valdez","doi":"10.3390/asi7020026","DOIUrl":null,"url":null,"abstract":"Designing and manufacturing transformers often involves variations in heights and thicknesses of windings. However, such geometric asymmetry introduces a significant impact on the magnitude of stray transformer losses. This study examines the effects of asymmetric coils on the generation of stray losses within core clamps and transformer tank walls. A model has been introduced to ascertain the dispersion magnetic field’s value at a specific distance from the coil. The analysis extends to characterising the dispersion magnetic field reaching the tank walls by using electromagnetic simulation by a finite element method. It explores strategies to diminish stray losses, including the placement of magnetic shunts as protective shields for the tank walls. It delves into the efficacy of employing a transformer shell-type configuration to mitigate the magnetic dispersion field. The findings revealed that achieving greater symmetry in transformer coils can minimise stray losses. Specifically, the incorporation of magnetic shunts has the potential to reduce additional losses by 40%, while the adoption of a shell-type configuration alone can lead to a 14% reduction. This work provides valuable insights into optimising transformer designs, contributes a user-friendly tool for estimating additional tank losses, thereby enhancing the knowledge base for transformer manufacturers.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing and Computing the Impact of Geometric Asymmetric Coils on Transformer Stray Losses\",\"authors\":\"I. A. Hernández-Robles, X. González-Ramírez, J. C. Olivares-Galvan, R. Escarela-Perez, R. Ocon-Valdez\",\"doi\":\"10.3390/asi7020026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing and manufacturing transformers often involves variations in heights and thicknesses of windings. However, such geometric asymmetry introduces a significant impact on the magnitude of stray transformer losses. This study examines the effects of asymmetric coils on the generation of stray losses within core clamps and transformer tank walls. A model has been introduced to ascertain the dispersion magnetic field’s value at a specific distance from the coil. The analysis extends to characterising the dispersion magnetic field reaching the tank walls by using electromagnetic simulation by a finite element method. It explores strategies to diminish stray losses, including the placement of magnetic shunts as protective shields for the tank walls. It delves into the efficacy of employing a transformer shell-type configuration to mitigate the magnetic dispersion field. The findings revealed that achieving greater symmetry in transformer coils can minimise stray losses. Specifically, the incorporation of magnetic shunts has the potential to reduce additional losses by 40%, while the adoption of a shell-type configuration alone can lead to a 14% reduction. This work provides valuable insights into optimising transformer designs, contributes a user-friendly tool for estimating additional tank losses, thereby enhancing the knowledge base for transformer manufacturers.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi7020026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

变压器的设计和制造通常涉及绕组高度和厚度的变化。然而,这种几何不对称会对变压器杂散损耗的大小产生重大影响。本研究探讨了不对称线圈对铁芯夹具和变压器油箱壁内杂散损耗产生的影响。研究引入了一个模型来确定离线圈特定距离处的分散磁场值。通过使用有限元法进行电磁模拟,分析扩展到了到达油箱壁的色散磁场的特征。它探讨了减少杂散损耗的策略,包括在油箱壁上放置磁分流器作为保护罩。研究还深入探讨了采用变压器外壳型配置来减轻磁散场的效果。研究结果表明,提高变压器线圈的对称性可以最大限度地减少杂散损耗。具体来说,采用磁分流器可将额外损耗减少 40%,而仅采用壳型配置则可减少 14%。这项工作为优化变压器设计提供了宝贵的见解,为估算额外油箱损耗提供了一个用户友好型工具,从而增强了变压器制造商的知识基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysing and Computing the Impact of Geometric Asymmetric Coils on Transformer Stray Losses
Designing and manufacturing transformers often involves variations in heights and thicknesses of windings. However, such geometric asymmetry introduces a significant impact on the magnitude of stray transformer losses. This study examines the effects of asymmetric coils on the generation of stray losses within core clamps and transformer tank walls. A model has been introduced to ascertain the dispersion magnetic field’s value at a specific distance from the coil. The analysis extends to characterising the dispersion magnetic field reaching the tank walls by using electromagnetic simulation by a finite element method. It explores strategies to diminish stray losses, including the placement of magnetic shunts as protective shields for the tank walls. It delves into the efficacy of employing a transformer shell-type configuration to mitigate the magnetic dispersion field. The findings revealed that achieving greater symmetry in transformer coils can minimise stray losses. Specifically, the incorporation of magnetic shunts has the potential to reduce additional losses by 40%, while the adoption of a shell-type configuration alone can lead to a 14% reduction. This work provides valuable insights into optimising transformer designs, contributes a user-friendly tool for estimating additional tank losses, thereby enhancing the knowledge base for transformer manufacturers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信