平面内波尔兹曼方程的静止解

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
L. Arkeryd, A. Nouri
{"title":"平面内波尔兹曼方程的静止解","authors":"L. Arkeryd, A. Nouri","doi":"10.1090/qam/1692","DOIUrl":null,"url":null,"abstract":"The paper proves existence of stationary solutions to the Boltzmann equation in a bounded set of \n\n \n \n \n R\n \n 2\n \n \\mathbb {R}^2\n \n\n for given indata, hard forces and truncation in the collision kernel for small velocities and close to parallel colliding velocities. It does not use any averaging in velocity lemma. Instead, it is based on stability techniques employing the Kolmogorov-Riesz-Fréchet theorem, from the discrete velocity stationary case, where the averaging in velocity lemmas are not valid.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary solutions to the Boltzmann equation in the plane\",\"authors\":\"L. Arkeryd, A. Nouri\",\"doi\":\"10.1090/qam/1692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proves existence of stationary solutions to the Boltzmann equation in a bounded set of \\n\\n \\n \\n \\n R\\n \\n 2\\n \\n \\\\mathbb {R}^2\\n \\n\\n for given indata, hard forces and truncation in the collision kernel for small velocities and close to parallel colliding velocities. It does not use any averaging in velocity lemma. Instead, it is based on stability techniques employing the Kolmogorov-Riesz-Fréchet theorem, from the discrete velocity stationary case, where the averaging in velocity lemmas are not valid.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1692\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1692","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

论文证明了在 R 2 \mathbb {R}^2 的有界集合中,对于给定的 indata、硬力和碰撞内核中的截断,小速度和接近平行碰撞速度的玻尔兹曼方程静止解的存在性。它不使用任何速度平均法。取而代之的是,它基于离散速度静止情况下的稳定性技术,采用了柯尔莫哥洛夫-里兹-弗雷谢定理,在离散速度静止情况下,速度平均定理是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary solutions to the Boltzmann equation in the plane
The paper proves existence of stationary solutions to the Boltzmann equation in a bounded set of R 2 \mathbb {R}^2 for given indata, hard forces and truncation in the collision kernel for small velocities and close to parallel colliding velocities. It does not use any averaging in velocity lemma. Instead, it is based on stability techniques employing the Kolmogorov-Riesz-Fréchet theorem, from the discrete velocity stationary case, where the averaging in velocity lemmas are not valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信