粒状桩上的环形筏分析研究

IF 0.7 Q4 MECHANICS
A. Rathor, Jitendra Kumar Sharma, Madhav R. Madhira
{"title":"粒状桩上的环形筏分析研究","authors":"A. Rathor, Jitendra Kumar Sharma, Madhav R. Madhira","doi":"10.2478/sgem-2024-0002","DOIUrl":null,"url":null,"abstract":"\n Rafts are frequently used to design foundations on soft soils to minimize the overall and differential settlements of structures built on them. In many cases, the raft alone can offer sufficient bearing capacity and all that is needed to restrict foundation settlements to a predetermined level with a few widely spaced piles. Granular piles (GPs) can be used due to their several advantages over steel or concrete piles. An annular raft foundation is generally provided for overhead water tanks, chimneys, etc. The provision of granular piles underneath the annular raft foundation not only increases the capacity of the foundation but also minimizes the settlement to an acceptable level. The present study deals with a rigorous analysis of annular raft foundation supported by GPs based on the continuum approach. A new numerical method is developed with geometric considerations for excluding the loaded pile portion from the region of the raft area by considering two distinct zones. This article introduces a novel approach, the annular raft over granular piles, which represents an innovative solution in geotechnical engineering. This innovation has the potential to improve the efficiency and effectiveness of foundation design in various construction projects. The response of annular raft foundation with GPs is evaluated in terms of settlement influence factor (SIF), load shared by granular piles (in %), and normalized shear stress variation along the GP–soil interface. The present study reveals that the presence of the pile influences the stress distribution locally. The stiffness of GP, relative length of GP, relative size of the raft influence the settlement and load sharing of annular raft with GPs.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analytical Study of Annular Raft on Granular Piles\",\"authors\":\"A. Rathor, Jitendra Kumar Sharma, Madhav R. Madhira\",\"doi\":\"10.2478/sgem-2024-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rafts are frequently used to design foundations on soft soils to minimize the overall and differential settlements of structures built on them. In many cases, the raft alone can offer sufficient bearing capacity and all that is needed to restrict foundation settlements to a predetermined level with a few widely spaced piles. Granular piles (GPs) can be used due to their several advantages over steel or concrete piles. An annular raft foundation is generally provided for overhead water tanks, chimneys, etc. The provision of granular piles underneath the annular raft foundation not only increases the capacity of the foundation but also minimizes the settlement to an acceptable level. The present study deals with a rigorous analysis of annular raft foundation supported by GPs based on the continuum approach. A new numerical method is developed with geometric considerations for excluding the loaded pile portion from the region of the raft area by considering two distinct zones. This article introduces a novel approach, the annular raft over granular piles, which represents an innovative solution in geotechnical engineering. This innovation has the potential to improve the efficiency and effectiveness of foundation design in various construction projects. The response of annular raft foundation with GPs is evaluated in terms of settlement influence factor (SIF), load shared by granular piles (in %), and normalized shear stress variation along the GP–soil interface. The present study reveals that the presence of the pile influences the stress distribution locally. The stiffness of GP, relative length of GP, relative size of the raft influence the settlement and load sharing of annular raft with GPs.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2024-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

筏板常用于设计软土上的地基,以尽量减少建在软土上的建筑物的整体沉降和差异沉降。在很多情况下,筏板本身就能提供足够的承载能力,只需几根间距较大的桩就能将地基沉降限制在预定水平。与钢桩或混凝土桩相比,花岗岩桩(GPs)具有多种优点,因此可以使用。高架水箱、烟囱等通常采用环形筏基。在环形筏形地基下设置颗粒桩不仅能提高地基承载力,还能将沉降降至可接受的水平。本研究以连续体方法为基础,对由 GPs 支撑的环形筏基进行了严格分析。通过考虑两个不同的区域,开发了一种新的数值方法,该方法从几何角度考虑,将加载桩部分排除在筏基区域之外。本文介绍了一种新方法--环形筏基上的颗粒桩,它代表了岩土工程中的一种创新解决方案。这种创新有可能提高各种建筑工程中地基设计的效率和效果。本研究从沉降影响因子 (SIF)、颗粒桩分担的荷载(单位:%)以及沿颗粒桩-土界面的归一化剪应力变化等方面评估了带有颗粒桩的环形筏基的响应。本研究表明,桩的存在会影响局部的应力分布。颗粒桩的刚度、颗粒桩的相对长度、筏的相对尺寸都会影响环形筏与颗粒桩的沉降和荷载分担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analytical Study of Annular Raft on Granular Piles
Rafts are frequently used to design foundations on soft soils to minimize the overall and differential settlements of structures built on them. In many cases, the raft alone can offer sufficient bearing capacity and all that is needed to restrict foundation settlements to a predetermined level with a few widely spaced piles. Granular piles (GPs) can be used due to their several advantages over steel or concrete piles. An annular raft foundation is generally provided for overhead water tanks, chimneys, etc. The provision of granular piles underneath the annular raft foundation not only increases the capacity of the foundation but also minimizes the settlement to an acceptable level. The present study deals with a rigorous analysis of annular raft foundation supported by GPs based on the continuum approach. A new numerical method is developed with geometric considerations for excluding the loaded pile portion from the region of the raft area by considering two distinct zones. This article introduces a novel approach, the annular raft over granular piles, which represents an innovative solution in geotechnical engineering. This innovation has the potential to improve the efficiency and effectiveness of foundation design in various construction projects. The response of annular raft foundation with GPs is evaluated in terms of settlement influence factor (SIF), load shared by granular piles (in %), and normalized shear stress variation along the GP–soil interface. The present study reveals that the presence of the pile influences the stress distribution locally. The stiffness of GP, relative length of GP, relative size of the raft influence the settlement and load sharing of annular raft with GPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信