P. Townsend, Cinthya Astudillo, Karla Larrea, Juan Carlos Suárez
{"title":"赤道地区湿度对 GFRP 容器制造的影响研究","authors":"P. Townsend, Cinthya Astudillo, Karla Larrea, Juan Carlos Suárez","doi":"10.4028/p-22wfse","DOIUrl":null,"url":null,"abstract":"The objective of this research work is to analyze the behavior between fiberglass laminate under tensile tests, assembled under different humidity conditions. For which specimens were designed under the regime of the international standard ASTM D3039; which took an assembly process within a controlled environment; the design variables used were relative humidity and curing time. Subsequently, the traction-displacement behavior was checked under a uniaxial force, obtaining the maximum take-off force. In addition, Simpson numerical integration was applied to calculate elastic energy. Obtaining that the relative humidity and the days of curing influence the chemical and mechanical properties of the material. Se shows that the percentage of humidity recommended for assembling laminates in GRP is 66% since it has greater elastic energy and take-off force. Finally, it is concluded that to have a high resistance in the material at least 7 days of curing of the epoxy resin must be applied.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Influence of Humidity on the Manufacture of GFRP Vessels in the Equatorial\",\"authors\":\"P. Townsend, Cinthya Astudillo, Karla Larrea, Juan Carlos Suárez\",\"doi\":\"10.4028/p-22wfse\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research work is to analyze the behavior between fiberglass laminate under tensile tests, assembled under different humidity conditions. For which specimens were designed under the regime of the international standard ASTM D3039; which took an assembly process within a controlled environment; the design variables used were relative humidity and curing time. Subsequently, the traction-displacement behavior was checked under a uniaxial force, obtaining the maximum take-off force. In addition, Simpson numerical integration was applied to calculate elastic energy. Obtaining that the relative humidity and the days of curing influence the chemical and mechanical properties of the material. Se shows that the percentage of humidity recommended for assembling laminates in GRP is 66% since it has greater elastic energy and take-off force. Finally, it is concluded that to have a high resistance in the material at least 7 days of curing of the epoxy resin must be applied.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-22wfse\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-22wfse","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Research on the Influence of Humidity on the Manufacture of GFRP Vessels in the Equatorial
The objective of this research work is to analyze the behavior between fiberglass laminate under tensile tests, assembled under different humidity conditions. For which specimens were designed under the regime of the international standard ASTM D3039; which took an assembly process within a controlled environment; the design variables used were relative humidity and curing time. Subsequently, the traction-displacement behavior was checked under a uniaxial force, obtaining the maximum take-off force. In addition, Simpson numerical integration was applied to calculate elastic energy. Obtaining that the relative humidity and the days of curing influence the chemical and mechanical properties of the material. Se shows that the percentage of humidity recommended for assembling laminates in GRP is 66% since it has greater elastic energy and take-off force. Finally, it is concluded that to have a high resistance in the material at least 7 days of curing of the epoxy resin must be applied.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.