搜索高阶有限域基元的算法研究

U. K. Turusbekova, M. Muratbekov, S. A. Altynbek
{"title":"搜索高阶有限域基元的算法研究","authors":"U. K. Turusbekova, M. Muratbekov, S. A. Altynbek","doi":"10.55452/1998-6688-2024-21-1-85-93","DOIUrl":null,"url":null,"abstract":"One of the most important unsolved and notoriously difficult problems in computational finite field theory is the development of a fast algorithm for constructing primitive roots in a finite field. It is known that for many applications, instead of a primitive root, just an element of high multiplicative order is sufficient. Such applications include, but are not limited to, cryptography, coding theory, pseudorandom number generation, and combinatorial schemes. Explicit constructions of high-order elements usually rely on combinatory methods that can provide a provable lower bound on the order, but this does not compute the exact order. Its execution usually implies knowledge of the factorization of the order. Ideally, we should be able to get a primitive element for any finite field in a reasonable amount of time. However, if the simple factorization of the group order is unknown, it is difficult to achieve the goal. Thus, we set the task of constructing an element, probably of a high order. This article discusses various algorithms that find a high-order element for general or special finite fields. This work also represents another contribution to the theory of Gauss periods over finite fields and their generalizations and analogues, which have already proven their usefulness for a number of different applications.","PeriodicalId":447639,"journal":{"name":"Herald of the Kazakh-British technical university","volume":"117 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESEARCH OF ALGORITHMS FOR SEARCHING PRIMITIVE ELEMENTS OF A FINITE FIELD OF HIGH ORDER\",\"authors\":\"U. K. Turusbekova, M. Muratbekov, S. A. Altynbek\",\"doi\":\"10.55452/1998-6688-2024-21-1-85-93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important unsolved and notoriously difficult problems in computational finite field theory is the development of a fast algorithm for constructing primitive roots in a finite field. It is known that for many applications, instead of a primitive root, just an element of high multiplicative order is sufficient. Such applications include, but are not limited to, cryptography, coding theory, pseudorandom number generation, and combinatorial schemes. Explicit constructions of high-order elements usually rely on combinatory methods that can provide a provable lower bound on the order, but this does not compute the exact order. Its execution usually implies knowledge of the factorization of the order. Ideally, we should be able to get a primitive element for any finite field in a reasonable amount of time. However, if the simple factorization of the group order is unknown, it is difficult to achieve the goal. Thus, we set the task of constructing an element, probably of a high order. This article discusses various algorithms that find a high-order element for general or special finite fields. This work also represents another contribution to the theory of Gauss periods over finite fields and their generalizations and analogues, which have already proven their usefulness for a number of different applications.\",\"PeriodicalId\":447639,\"journal\":{\"name\":\"Herald of the Kazakh-British technical university\",\"volume\":\"117 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Kazakh-British technical university\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55452/1998-6688-2024-21-1-85-93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Kazakh-British technical university","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55452/1998-6688-2024-21-1-85-93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算有限域理论中最重要的未解难题之一,也是众所周知的难题之一,就是开发一种在有限域中构造初等根的快速算法。众所周知,在许多应用中,只需一个高乘阶元素就足以代替一个原始根。这些应用包括但不限于密码学、编码理论、伪随机数生成和组合方案。高阶元素的显式构造通常依赖于组合方法,这种方法可以提供一个可证明的阶下限,但并不能计算出精确的阶。执行这种方法通常需要知道阶的因式分解。理想情况下,我们应该能在合理的时间内得到任何有限域的基元。然而,如果群序的简单因式分解未知,就很难实现这一目标。因此,我们的任务是构造一个可能是高阶的元素。本文讨论了为一般或特殊有限域寻找高阶元素的各种算法。这项工作也是对有限域高斯周期理论及其广义和类似理论的又一贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RESEARCH OF ALGORITHMS FOR SEARCHING PRIMITIVE ELEMENTS OF A FINITE FIELD OF HIGH ORDER
One of the most important unsolved and notoriously difficult problems in computational finite field theory is the development of a fast algorithm for constructing primitive roots in a finite field. It is known that for many applications, instead of a primitive root, just an element of high multiplicative order is sufficient. Such applications include, but are not limited to, cryptography, coding theory, pseudorandom number generation, and combinatorial schemes. Explicit constructions of high-order elements usually rely on combinatory methods that can provide a provable lower bound on the order, but this does not compute the exact order. Its execution usually implies knowledge of the factorization of the order. Ideally, we should be able to get a primitive element for any finite field in a reasonable amount of time. However, if the simple factorization of the group order is unknown, it is difficult to achieve the goal. Thus, we set the task of constructing an element, probably of a high order. This article discusses various algorithms that find a high-order element for general or special finite fields. This work also represents another contribution to the theory of Gauss periods over finite fields and their generalizations and analogues, which have already proven their usefulness for a number of different applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信