用机器学习方法识别影响深层矿井复杂排水系统抽水负荷转移的重要参数

Mining Pub Date : 2024-03-26 DOI:10.3390/mining4020012
Fortunate Olifant, Shaun Hancock, Johan du Plessis, J. V. van Laar, Corné Schutte
{"title":"用机器学习方法识别影响深层矿井复杂排水系统抽水负荷转移的重要参数","authors":"Fortunate Olifant, Shaun Hancock, Johan du Plessis, J. V. van Laar, Corné Schutte","doi":"10.3390/mining4020012","DOIUrl":null,"url":null,"abstract":"This study investigated the application of machine learning to optimise the pumping load shift of a complex dewatering system in a deep-level mine, aiming to reduce energy costs associated with the dewatering process, which consumes an average of 14% of the mine’s electricity. Traditional practices, reliant on human control and simulations, often lead to inconsistent savings and occasional losses. The study employed multivariate linear regression (MLR) and extreme gradient boosting (XGBoost) on a mine dewatering system, to identify important parameters influencing the pumping load shift performance. Critical parameters significantly impacting the energy consumption of the dewatering system were identified by the best-performing model, XGBoost. Implementing a pumping schedule based on XGBoost insights resulted in consistent load shifting and enhanced energy cost savings. These findings highlight the potential of machine learning in comprehending and optimising complex systems in deep-level mines, with the case study approach proving effective in quantifying and validating real-world impacts. This approach could offer substantial energy savings through data-driven decision-making.","PeriodicalId":504331,"journal":{"name":"Mining","volume":"104 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approach to Identify Important Parameters Influencing Pumping Load Shift in a Complex Dewatering System of a Deep-Level Mine\",\"authors\":\"Fortunate Olifant, Shaun Hancock, Johan du Plessis, J. V. van Laar, Corné Schutte\",\"doi\":\"10.3390/mining4020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the application of machine learning to optimise the pumping load shift of a complex dewatering system in a deep-level mine, aiming to reduce energy costs associated with the dewatering process, which consumes an average of 14% of the mine’s electricity. Traditional practices, reliant on human control and simulations, often lead to inconsistent savings and occasional losses. The study employed multivariate linear regression (MLR) and extreme gradient boosting (XGBoost) on a mine dewatering system, to identify important parameters influencing the pumping load shift performance. Critical parameters significantly impacting the energy consumption of the dewatering system were identified by the best-performing model, XGBoost. Implementing a pumping schedule based on XGBoost insights resulted in consistent load shifting and enhanced energy cost savings. These findings highlight the potential of machine learning in comprehending and optimising complex systems in deep-level mines, with the case study approach proving effective in quantifying and validating real-world impacts. This approach could offer substantial energy savings through data-driven decision-making.\",\"PeriodicalId\":504331,\"journal\":{\"name\":\"Mining\",\"volume\":\"104 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mining4020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mining4020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了机器学习在优化深层矿井复杂脱水系统的抽水负荷转移中的应用,旨在降低与脱水过程相关的能源成本,该过程平均消耗矿井 14% 的电力。传统的做法依赖于人为控制和模拟,往往导致节省的能源不稳定,有时还会造成损失。这项研究在矿井脱水系统上采用了多元线性回归(MLR)和极梯度提升(XGBoost)技术,以确定影响泵送负荷转变性能的重要参数。性能最佳的 XGBoost 模型确定了对脱水系统能耗有重大影响的关键参数。根据 XGBoost 的洞察力实施抽水计划,实现了稳定的负荷转移并提高了能源成本节约。这些发现凸显了机器学习在理解和优化深层矿井复杂系统方面的潜力,案例研究方法在量化和验证现实世界的影响方面证明是有效的。这种方法可以通过数据驱动的决策大幅节约能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Approach to Identify Important Parameters Influencing Pumping Load Shift in a Complex Dewatering System of a Deep-Level Mine
This study investigated the application of machine learning to optimise the pumping load shift of a complex dewatering system in a deep-level mine, aiming to reduce energy costs associated with the dewatering process, which consumes an average of 14% of the mine’s electricity. Traditional practices, reliant on human control and simulations, often lead to inconsistent savings and occasional losses. The study employed multivariate linear regression (MLR) and extreme gradient boosting (XGBoost) on a mine dewatering system, to identify important parameters influencing the pumping load shift performance. Critical parameters significantly impacting the energy consumption of the dewatering system were identified by the best-performing model, XGBoost. Implementing a pumping schedule based on XGBoost insights resulted in consistent load shifting and enhanced energy cost savings. These findings highlight the potential of machine learning in comprehending and optimising complex systems in deep-level mines, with the case study approach proving effective in quantifying and validating real-world impacts. This approach could offer substantial energy savings through data-driven decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信