两种不相溶纳米流体在多孔通道中的脉动 MHD 流动与滑动效应

Q3 Chemical Engineering
Padma Devi Medisetty, Srinivas Suripeddi, S. Badeti, Vajravelu Kuppalapalle
{"title":"两种不相溶纳米流体在多孔通道中的脉动 MHD 流动与滑动效应","authors":"Padma Devi Medisetty, Srinivas Suripeddi, S. Badeti, Vajravelu Kuppalapalle","doi":"10.59441/ijame/175745","DOIUrl":null,"url":null,"abstract":"The present study is carried out to investigate the effects of shape factor nanoparticles on the oscillatory MHD flow of a nanofluid in two immiscible liquids in a horizontal porous channel with velocity and thermal slip on the walls. Thermal radiation, Joule heating, viscous and Darcy dissipations have been accounted for in the model. We have considered and as nanoparticles, in the lower region (Region-I) and upper region (Region-II) respectively, with water as a base fluid. The effective ratio of thermal conductivity of the nanofluid is evaluated using the Maxwell-Garnetts model. Graphical behavior of velocity, temperature, and rate of heat transfer distributions have been depicted for the cases of slip and no-slip effects. This study has been made to understand the impact of different nanoparticle shape factors on temperature and heat transfer rate. For various parameters, values of shear stress distribution at the walls and the mass flux are shown in tabular form. Our study asserts that with the increase of the strength of the magnetic field, the velocity of the liquid falls and enhances the temperature of the liquid. The influence of different combinations of nanoparticles, on the flow variables, have also been discussed. In order to validate the analytical results, the numerical evaluation of the closed-form results, for the velocity distribution, has been compared with those of the numerical method, by using the NDSolve command in MATHEMATICA, and a good agreement is observed.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"106 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsatile MHD Flow of Two Immiscible Nanofluid through a Porous Channel with Slip Effects\",\"authors\":\"Padma Devi Medisetty, Srinivas Suripeddi, S. Badeti, Vajravelu Kuppalapalle\",\"doi\":\"10.59441/ijame/175745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is carried out to investigate the effects of shape factor nanoparticles on the oscillatory MHD flow of a nanofluid in two immiscible liquids in a horizontal porous channel with velocity and thermal slip on the walls. Thermal radiation, Joule heating, viscous and Darcy dissipations have been accounted for in the model. We have considered and as nanoparticles, in the lower region (Region-I) and upper region (Region-II) respectively, with water as a base fluid. The effective ratio of thermal conductivity of the nanofluid is evaluated using the Maxwell-Garnetts model. Graphical behavior of velocity, temperature, and rate of heat transfer distributions have been depicted for the cases of slip and no-slip effects. This study has been made to understand the impact of different nanoparticle shape factors on temperature and heat transfer rate. For various parameters, values of shear stress distribution at the walls and the mass flux are shown in tabular form. Our study asserts that with the increase of the strength of the magnetic field, the velocity of the liquid falls and enhances the temperature of the liquid. The influence of different combinations of nanoparticles, on the flow variables, have also been discussed. In order to validate the analytical results, the numerical evaluation of the closed-form results, for the velocity distribution, has been compared with those of the numerical method, by using the NDSolve command in MATHEMATICA, and a good agreement is observed.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"106 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/175745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/175745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨形状因子纳米粒子对纳米流体在水平多孔通道中两种不相溶液体中的振荡 MHD 流动的影响,该流动具有速度滑移和壁面热滑移。模型中考虑了热辐射、焦耳热、粘性和达西耗散。我们将 和 分别视为下部区域(区域-I)和上部区域(区域-II)的纳米颗粒,并将水作为基础流体。使用 Maxwell-Garnetts 模型评估了纳米流体的有效导热率。在滑移和无滑移效应的情况下,速度、温度和热传导率分布的图形行为已被描绘出来。这项研究旨在了解不同纳米颗粒形状因素对温度和传热速率的影响。对于各种参数,壁面的剪应力分布值和质量通量以表格形式显示。我们的研究表明,随着磁场强度的增加,液体的速度下降,液体的温度升高。我们还讨论了不同纳米粒子组合对流动变量的影响。为了验证分析结果,使用 MATHEMATICA 中的 NDSolve 命令对速度分布的闭式结果进行了数值评估,并将其与数值方法的结果进行了比较,结果表明两者具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pulsatile MHD Flow of Two Immiscible Nanofluid through a Porous Channel with Slip Effects
The present study is carried out to investigate the effects of shape factor nanoparticles on the oscillatory MHD flow of a nanofluid in two immiscible liquids in a horizontal porous channel with velocity and thermal slip on the walls. Thermal radiation, Joule heating, viscous and Darcy dissipations have been accounted for in the model. We have considered and as nanoparticles, in the lower region (Region-I) and upper region (Region-II) respectively, with water as a base fluid. The effective ratio of thermal conductivity of the nanofluid is evaluated using the Maxwell-Garnetts model. Graphical behavior of velocity, temperature, and rate of heat transfer distributions have been depicted for the cases of slip and no-slip effects. This study has been made to understand the impact of different nanoparticle shape factors on temperature and heat transfer rate. For various parameters, values of shear stress distribution at the walls and the mass flux are shown in tabular form. Our study asserts that with the increase of the strength of the magnetic field, the velocity of the liquid falls and enhances the temperature of the liquid. The influence of different combinations of nanoparticles, on the flow variables, have also been discussed. In order to validate the analytical results, the numerical evaluation of the closed-form results, for the velocity distribution, has been compared with those of the numerical method, by using the NDSolve command in MATHEMATICA, and a good agreement is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信