用于先进电化学应用的等离子体处理掺钴纳米多孔石墨烯

C Pub Date : 2024-03-26 DOI:10.3390/c10020031
Florian Knabl, Nikolaos Kostoglou, Ram K. Gupta, A. Tarat, S. Hinder, M. Baker, Claus Rebholz, Christian Mitterer
{"title":"用于先进电化学应用的等离子体处理掺钴纳米多孔石墨烯","authors":"Florian Knabl, Nikolaos Kostoglou, Ram K. Gupta, A. Tarat, S. Hinder, M. Baker, Claus Rebholz, Christian Mitterer","doi":"10.3390/c10020031","DOIUrl":null,"url":null,"abstract":"Metal–carbon nanocomposites are identified as key contenders for enhancing water splitting through the oxygen evolution reaction and boosting supercapacitor energy storage capacitances. This study utilizes plasma treatment to transform natural graphite into nanoporous few-layer graphene, followed by additional milling and plasma steps to synthesize a cobalt–graphene nanocomposite. Comprehensive structural characterization was conducted using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and X-ray photoelectron spectroscopy. Electrochemical evaluations further assessed the materials’ oxygen evolution reaction and supercapacitor performance. Although the specific surface area of the nanoporous carbon decreases from 780 to 480 m2/g in the transition to the resulting nanocomposite, it maintains its nanoporous structure and delivers a competitive electrochemical performance, as evidenced by an overpotential of 290 mV and a Tafel slope of 110 mV/dec. This demonstrates the efficacy of plasma treatment in the surface functionalization of carbon-based materials, highlighting its potential for large-scale chemical-free application due to its environmental friendliness and scalability, paving the way toward future applications.","PeriodicalId":9397,"journal":{"name":"C","volume":"116 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Treated Cobalt-Doped Nanoporous Graphene for Advanced Electrochemical Applications\",\"authors\":\"Florian Knabl, Nikolaos Kostoglou, Ram K. Gupta, A. Tarat, S. Hinder, M. Baker, Claus Rebholz, Christian Mitterer\",\"doi\":\"10.3390/c10020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal–carbon nanocomposites are identified as key contenders for enhancing water splitting through the oxygen evolution reaction and boosting supercapacitor energy storage capacitances. This study utilizes plasma treatment to transform natural graphite into nanoporous few-layer graphene, followed by additional milling and plasma steps to synthesize a cobalt–graphene nanocomposite. Comprehensive structural characterization was conducted using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and X-ray photoelectron spectroscopy. Electrochemical evaluations further assessed the materials’ oxygen evolution reaction and supercapacitor performance. Although the specific surface area of the nanoporous carbon decreases from 780 to 480 m2/g in the transition to the resulting nanocomposite, it maintains its nanoporous structure and delivers a competitive electrochemical performance, as evidenced by an overpotential of 290 mV and a Tafel slope of 110 mV/dec. This demonstrates the efficacy of plasma treatment in the surface functionalization of carbon-based materials, highlighting its potential for large-scale chemical-free application due to its environmental friendliness and scalability, paving the way toward future applications.\",\"PeriodicalId\":9397,\"journal\":{\"name\":\"C\",\"volume\":\"116 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/c10020031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c10020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属-碳纳米复合材料被认为是通过氧进化反应提高水分裂能力和增强超级电容器储能电容的关键竞争者。本研究利用等离子体处理将天然石墨转化为纳米多孔少层石墨烯,然后再通过研磨和等离子体步骤合成钴-石墨烯纳米复合材料。利用扫描和透射电子显微镜、X 射线衍射、拉曼光谱、气体吸附分析和 X 射线光电子能谱进行了全面的结构表征。电化学评价进一步评估了材料的氧进化反应和超级电容器性能。虽然纳米多孔碳的比表面积从 780 m2/g 减小到 480 m2/g,但在过渡到纳米复合材料的过程中,它保持了纳米多孔结构,并提供了具有竞争力的电化学性能,过电位为 290 mV,塔菲尔斜率为 110 mV/dec。这证明了等离子处理在碳基材料表面功能化方面的功效,突出了等离子处理因其环境友好性和可扩展性而在大规模无化学应用方面的潜力,为未来的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma-Treated Cobalt-Doped Nanoporous Graphene for Advanced Electrochemical Applications
Metal–carbon nanocomposites are identified as key contenders for enhancing water splitting through the oxygen evolution reaction and boosting supercapacitor energy storage capacitances. This study utilizes plasma treatment to transform natural graphite into nanoporous few-layer graphene, followed by additional milling and plasma steps to synthesize a cobalt–graphene nanocomposite. Comprehensive structural characterization was conducted using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and X-ray photoelectron spectroscopy. Electrochemical evaluations further assessed the materials’ oxygen evolution reaction and supercapacitor performance. Although the specific surface area of the nanoporous carbon decreases from 780 to 480 m2/g in the transition to the resulting nanocomposite, it maintains its nanoporous structure and delivers a competitive electrochemical performance, as evidenced by an overpotential of 290 mV and a Tafel slope of 110 mV/dec. This demonstrates the efficacy of plasma treatment in the surface functionalization of carbon-based materials, highlighting its potential for large-scale chemical-free application due to its environmental friendliness and scalability, paving the way toward future applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
C
C
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信