Florian Knabl, Nikolaos Kostoglou, Ram K. Gupta, A. Tarat, S. Hinder, M. Baker, Claus Rebholz, Christian Mitterer
{"title":"用于先进电化学应用的等离子体处理掺钴纳米多孔石墨烯","authors":"Florian Knabl, Nikolaos Kostoglou, Ram K. Gupta, A. Tarat, S. Hinder, M. Baker, Claus Rebholz, Christian Mitterer","doi":"10.3390/c10020031","DOIUrl":null,"url":null,"abstract":"Metal–carbon nanocomposites are identified as key contenders for enhancing water splitting through the oxygen evolution reaction and boosting supercapacitor energy storage capacitances. This study utilizes plasma treatment to transform natural graphite into nanoporous few-layer graphene, followed by additional milling and plasma steps to synthesize a cobalt–graphene nanocomposite. Comprehensive structural characterization was conducted using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and X-ray photoelectron spectroscopy. Electrochemical evaluations further assessed the materials’ oxygen evolution reaction and supercapacitor performance. Although the specific surface area of the nanoporous carbon decreases from 780 to 480 m2/g in the transition to the resulting nanocomposite, it maintains its nanoporous structure and delivers a competitive electrochemical performance, as evidenced by an overpotential of 290 mV and a Tafel slope of 110 mV/dec. This demonstrates the efficacy of plasma treatment in the surface functionalization of carbon-based materials, highlighting its potential for large-scale chemical-free application due to its environmental friendliness and scalability, paving the way toward future applications.","PeriodicalId":9397,"journal":{"name":"C","volume":"116 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Treated Cobalt-Doped Nanoporous Graphene for Advanced Electrochemical Applications\",\"authors\":\"Florian Knabl, Nikolaos Kostoglou, Ram K. Gupta, A. Tarat, S. Hinder, M. Baker, Claus Rebholz, Christian Mitterer\",\"doi\":\"10.3390/c10020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal–carbon nanocomposites are identified as key contenders for enhancing water splitting through the oxygen evolution reaction and boosting supercapacitor energy storage capacitances. This study utilizes plasma treatment to transform natural graphite into nanoporous few-layer graphene, followed by additional milling and plasma steps to synthesize a cobalt–graphene nanocomposite. Comprehensive structural characterization was conducted using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and X-ray photoelectron spectroscopy. Electrochemical evaluations further assessed the materials’ oxygen evolution reaction and supercapacitor performance. Although the specific surface area of the nanoporous carbon decreases from 780 to 480 m2/g in the transition to the resulting nanocomposite, it maintains its nanoporous structure and delivers a competitive electrochemical performance, as evidenced by an overpotential of 290 mV and a Tafel slope of 110 mV/dec. This demonstrates the efficacy of plasma treatment in the surface functionalization of carbon-based materials, highlighting its potential for large-scale chemical-free application due to its environmental friendliness and scalability, paving the way toward future applications.\",\"PeriodicalId\":9397,\"journal\":{\"name\":\"C\",\"volume\":\"116 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/c10020031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c10020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma-Treated Cobalt-Doped Nanoporous Graphene for Advanced Electrochemical Applications
Metal–carbon nanocomposites are identified as key contenders for enhancing water splitting through the oxygen evolution reaction and boosting supercapacitor energy storage capacitances. This study utilizes plasma treatment to transform natural graphite into nanoporous few-layer graphene, followed by additional milling and plasma steps to synthesize a cobalt–graphene nanocomposite. Comprehensive structural characterization was conducted using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and X-ray photoelectron spectroscopy. Electrochemical evaluations further assessed the materials’ oxygen evolution reaction and supercapacitor performance. Although the specific surface area of the nanoporous carbon decreases from 780 to 480 m2/g in the transition to the resulting nanocomposite, it maintains its nanoporous structure and delivers a competitive electrochemical performance, as evidenced by an overpotential of 290 mV and a Tafel slope of 110 mV/dec. This demonstrates the efficacy of plasma treatment in the surface functionalization of carbon-based materials, highlighting its potential for large-scale chemical-free application due to its environmental friendliness and scalability, paving the way toward future applications.