密度可变的三维不可压缩霍尔-MHD 系统的全局强解

IF 1.6 3区 数学 Q1 MATHEMATICS
Shu An, Jing-Yao Chen, Bin Han
{"title":"密度可变的三维不可压缩霍尔-MHD 系统的全局强解","authors":"Shu An, Jing-Yao Chen, Bin Han","doi":"10.3846/mma.2024.17776","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the well-posedness problem of the three-dimensional incompressible viscous and resistive Hall-magnetohydrodynamics system (Hall-MHD) with variable density. We mainly prove the existence and uniqueness issues of the density-dependent incompressible Hall-magnetohydrodynamic system in critical spaces on R3.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE GLOBAL STRONG SOLUTIONS OF THE 3D INCOMPRESSIBLE HALL-MHD SYSTEM WITH VARIABLE DENSITY\",\"authors\":\"Shu An, Jing-Yao Chen, Bin Han\",\"doi\":\"10.3846/mma.2024.17776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the well-posedness problem of the three-dimensional incompressible viscous and resistive Hall-magnetohydrodynamics system (Hall-MHD) with variable density. We mainly prove the existence and uniqueness issues of the density-dependent incompressible Hall-magnetohydrodynamic system in critical spaces on R3.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.17776\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.17776","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究密度可变的三维不可压缩粘性和阻力霍尔磁流体力学系统(Hall-MHD)的拟合问题。我们主要证明了 R3 上临界空间中与密度有关的不可压缩霍尔-磁流体动力学系统的存在性和唯一性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE GLOBAL STRONG SOLUTIONS OF THE 3D INCOMPRESSIBLE HALL-MHD SYSTEM WITH VARIABLE DENSITY
In this paper, we focus on the well-posedness problem of the three-dimensional incompressible viscous and resistive Hall-magnetohydrodynamics system (Hall-MHD) with variable density. We mainly prove the existence and uniqueness issues of the density-dependent incompressible Hall-magnetohydrodynamic system in critical spaces on R3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信