利用中型甲醇池火灾结果的面积验证指标对湍流反应模型进行验证评估

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY
Jared Kirsch, Nima Fathi
{"title":"利用中型甲醇池火灾结果的面积验证指标对湍流反应模型进行验证评估","authors":"Jared Kirsch, Nima Fathi","doi":"10.1115/1.4065173","DOIUrl":null,"url":null,"abstract":"\n Accident analysis and ensuring power plant safety are pivotal in the nuclear energy sector. Significant strides have been achieved over the past few decades regarding fire protection and safety, primarily centered on design and regulatory compliance. Yet, after the Fukushima accident a decade ago, the imperative to enhance measures against fire, internal flooding, and power loss has intensified. Hence, a comprehensive, multilayered protection strategy against severe accidents is needed. Consequently, gaining a deeper insight into pool fires and their behavior through extensive validated data can greatly aid in improving these measures using advanced validation techniques. A model validation study was performed at Sandia National Laboratories in which a 30-cm diameter methanol pool fire was modeled using the SIERRA/Fuego turbulent reacting flow code. This validation study used a standard validation experiment to compare model results against, and conclusions have been published. The fire was modeled with a Large Eddy Simulation (LES) turbulence model with subgrid turbulent kinetic energy closure. Combustion was modeled using a strained laminar flamelet library approach. Radiative heat transfer was accounted for with a model utilizing the gray-gas approximation. In the present study, additional validation analysis is performed using the area validation metric (AVM). These activities are done on multiple datasets involving different variables and temporal/spatial ranges and intervals. The results provide insight into the use of the area validation metric on such temporally varying datasets and the importance of physics-aware use of the metric for proper analysis.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation Assessment of Turbulent Reacting Flow Model Using The Area-Validation Metric on Medium-Scale Methanol Pool Fire Results\",\"authors\":\"Jared Kirsch, Nima Fathi\",\"doi\":\"10.1115/1.4065173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accident analysis and ensuring power plant safety are pivotal in the nuclear energy sector. Significant strides have been achieved over the past few decades regarding fire protection and safety, primarily centered on design and regulatory compliance. Yet, after the Fukushima accident a decade ago, the imperative to enhance measures against fire, internal flooding, and power loss has intensified. Hence, a comprehensive, multilayered protection strategy against severe accidents is needed. Consequently, gaining a deeper insight into pool fires and their behavior through extensive validated data can greatly aid in improving these measures using advanced validation techniques. A model validation study was performed at Sandia National Laboratories in which a 30-cm diameter methanol pool fire was modeled using the SIERRA/Fuego turbulent reacting flow code. This validation study used a standard validation experiment to compare model results against, and conclusions have been published. The fire was modeled with a Large Eddy Simulation (LES) turbulence model with subgrid turbulent kinetic energy closure. Combustion was modeled using a strained laminar flamelet library approach. Radiative heat transfer was accounted for with a model utilizing the gray-gas approximation. In the present study, additional validation analysis is performed using the area validation metric (AVM). These activities are done on multiple datasets involving different variables and temporal/spatial ranges and intervals. The results provide insight into the use of the area validation metric on such temporally varying datasets and the importance of physics-aware use of the metric for proper analysis.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

事故分析和确保发电厂安全在核能领域至关重要。过去几十年来,在防火和安全方面取得了长足进步,主要集中在设计和法规遵从方面。然而,在十年前的福岛事故之后,加强防火、防内涝和防电力损失措施的必要性进一步增强。因此,需要针对严重事故制定全面、多层次的保护战略。因此,通过广泛的验证数据深入了解水池火灾及其行为,可大大有助于利用先进的验证技术改进这些措施。桑迪亚国家实验室进行了一项模型验证研究,使用 SIERRA/Fuego 湍流反应流代码对直径为 30 厘米的甲醇池火灾进行了建模。该验证研究使用了标准验证实验来比较模型结果,结论已经公布。火灾模型采用大涡模拟(LES)湍流模型和子网格湍流动能闭合模型。燃烧模型采用应变层流火焰库方法。辐射传热采用灰气近似模型进行计算。在本研究中,还使用面积验证指标(AVM)进行了额外的验证分析。这些活动是在涉及不同变量、时间/空间范围和间隔的多个数据集上进行的。研究结果使我们深入了解了在这种时间变化的数据集上使用面积验证指标的情况,以及在进行适当分析时使用具有物理意识的指标的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation Assessment of Turbulent Reacting Flow Model Using The Area-Validation Metric on Medium-Scale Methanol Pool Fire Results
Accident analysis and ensuring power plant safety are pivotal in the nuclear energy sector. Significant strides have been achieved over the past few decades regarding fire protection and safety, primarily centered on design and regulatory compliance. Yet, after the Fukushima accident a decade ago, the imperative to enhance measures against fire, internal flooding, and power loss has intensified. Hence, a comprehensive, multilayered protection strategy against severe accidents is needed. Consequently, gaining a deeper insight into pool fires and their behavior through extensive validated data can greatly aid in improving these measures using advanced validation techniques. A model validation study was performed at Sandia National Laboratories in which a 30-cm diameter methanol pool fire was modeled using the SIERRA/Fuego turbulent reacting flow code. This validation study used a standard validation experiment to compare model results against, and conclusions have been published. The fire was modeled with a Large Eddy Simulation (LES) turbulence model with subgrid turbulent kinetic energy closure. Combustion was modeled using a strained laminar flamelet library approach. Radiative heat transfer was accounted for with a model utilizing the gray-gas approximation. In the present study, additional validation analysis is performed using the area validation metric (AVM). These activities are done on multiple datasets involving different variables and temporal/spatial ranges and intervals. The results provide insight into the use of the area validation metric on such temporally varying datasets and the importance of physics-aware use of the metric for proper analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信