揭示惰性生物质在膜充气生物膜反应器中同时硝化和反硝化的作用

IF 0.4 Q4 MATHEMATICS, APPLIED
Maryam Ghasemi, Sheng Chang, Sivabal Sivaloganathan
{"title":"揭示惰性生物质在膜充气生物膜反应器中同时硝化和反硝化的作用","authors":"Maryam Ghasemi, Sheng Chang, Sivabal Sivaloganathan","doi":"10.5206/mase/17134","DOIUrl":null,"url":null,"abstract":"This study presents an innovative 2D spatio-temporal model that sheds light on the intricate formation of biofilms, incorporating two essential biomass decay pathways: cell lysis and endogenous respiration. The model encompasses heterotrophic bacteria (HB), anaerobic heterotrophic bacteria (AHB), and autotrophic bacteria (AB), offering a comprehensive understanding of multi-species biofilm development. Through meticulous simulations, we explore the primary mechanisms behind inert biomass formation in biofilms, revealing the key roles played by the lysis of HB, AHB, and AB, as well as the endogenous respiration of HB. Moreover, the simulations reveal how species of higher abundance contribute significantly to inert biomass generation, reshaping our understanding of biofilm dynamics. Crucially, this study highlights the indispensability of considering biofilm inert biomass when modeling the nitrification and denitrification behaviors of a membrane aerated biofilm reactor (MABR). The distribution of oxygen and acetate across biofilm thickness is remarkably different when inert biomass is factored in, underscoring the necessity for a more holistic approach to modeling biofilm behavior. With the introduction of the inert biomass inclusive biofilm model, our simulations explore the interactive effects of key process conditions - bulk concentrations of oxygen ($O_{\\infty}$), ammonium nitrogen ($N_{1\\infty}$), acetate ($A_{\\infty}$), and biofilm thickness - on the nitrification and denitrification performance of MABR. A compelling correlation emerges between higher bulk concentrations of oxygen and ammonium nitrogen and optimal nitrification rates, achieving an impressive range of 0.3 to 1.1 g ammonium/$m^{2}/d. Delving into denitrification, we observe that high $O_{\\infty}$, low $N_{1\\infty}$, and either high or low $A_{\\infty}$ levels impede AHB formation and consequently hinder denitrification. Our findings provide a roadmap for achieving simultaneous nitrification and denitrification, contingent on specific conditions: $10[gm^{-3}] < O_{\\infty} < 15[gm^{-3}]$, $12[gm^{-3}] < N_{1\\infty} < 20[gm^{-3}]$, $A_{\\infty}$ ranging from $3[gm^{-3}]$ to $12[gm^{-3}]$, and a biofilm thickness $> 1.4[mm]$. While our study reveals promising avenues for simultaneous nitrification and denitrification, denitrification rates still lag behind nitrification rates under the same conditions. As a result, we advocate for further investigations to devise strategies that can enhance denitrification in MABR systems. In conclusion, this study advances our knowledge of biofilm dynamics by introducing a comprehensive model and illuminating the key factors driving nitrification and denitrification performance in MABRs. These findings pave the way for improved biofilm engineering and wastewater treatment strategies, opening new horizons for sustainable environmental practices.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the role of inert biomass in membrane aerated biofilm reactors for simultaneous nitrification and denitrification\",\"authors\":\"Maryam Ghasemi, Sheng Chang, Sivabal Sivaloganathan\",\"doi\":\"10.5206/mase/17134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an innovative 2D spatio-temporal model that sheds light on the intricate formation of biofilms, incorporating two essential biomass decay pathways: cell lysis and endogenous respiration. The model encompasses heterotrophic bacteria (HB), anaerobic heterotrophic bacteria (AHB), and autotrophic bacteria (AB), offering a comprehensive understanding of multi-species biofilm development. Through meticulous simulations, we explore the primary mechanisms behind inert biomass formation in biofilms, revealing the key roles played by the lysis of HB, AHB, and AB, as well as the endogenous respiration of HB. Moreover, the simulations reveal how species of higher abundance contribute significantly to inert biomass generation, reshaping our understanding of biofilm dynamics. Crucially, this study highlights the indispensability of considering biofilm inert biomass when modeling the nitrification and denitrification behaviors of a membrane aerated biofilm reactor (MABR). The distribution of oxygen and acetate across biofilm thickness is remarkably different when inert biomass is factored in, underscoring the necessity for a more holistic approach to modeling biofilm behavior. With the introduction of the inert biomass inclusive biofilm model, our simulations explore the interactive effects of key process conditions - bulk concentrations of oxygen ($O_{\\\\infty}$), ammonium nitrogen ($N_{1\\\\infty}$), acetate ($A_{\\\\infty}$), and biofilm thickness - on the nitrification and denitrification performance of MABR. A compelling correlation emerges between higher bulk concentrations of oxygen and ammonium nitrogen and optimal nitrification rates, achieving an impressive range of 0.3 to 1.1 g ammonium/$m^{2}/d. Delving into denitrification, we observe that high $O_{\\\\infty}$, low $N_{1\\\\infty}$, and either high or low $A_{\\\\infty}$ levels impede AHB formation and consequently hinder denitrification. Our findings provide a roadmap for achieving simultaneous nitrification and denitrification, contingent on specific conditions: $10[gm^{-3}] < O_{\\\\infty} < 15[gm^{-3}]$, $12[gm^{-3}] < N_{1\\\\infty} < 20[gm^{-3}]$, $A_{\\\\infty}$ ranging from $3[gm^{-3}]$ to $12[gm^{-3}]$, and a biofilm thickness $> 1.4[mm]$. While our study reveals promising avenues for simultaneous nitrification and denitrification, denitrification rates still lag behind nitrification rates under the same conditions. As a result, we advocate for further investigations to devise strategies that can enhance denitrification in MABR systems. In conclusion, this study advances our knowledge of biofilm dynamics by introducing a comprehensive model and illuminating the key factors driving nitrification and denitrification performance in MABRs. These findings pave the way for improved biofilm engineering and wastewater treatment strategies, opening new horizons for sustainable environmental practices.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/17134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/17134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的二维时空模型,揭示了生物膜错综复杂的形成过程,其中包含两条重要的生物量衰减途径:细胞裂解和内源呼吸。该模型包括异养菌(HB)、厌氧异养菌(AHB)和自养菌(AB),可全面了解多物种生物膜的形成。通过细致的模拟,我们探索了生物膜中惰性生物质形成的主要机制,揭示了 HB、AHB 和 AB 的裂解以及 HB 的内源呼吸所起的关键作用。此外,模拟还揭示了丰度较高的物种是如何对惰性生物质的生成做出重大贡献的,从而重塑了我们对生物膜动力学的认识。最重要的是,这项研究强调了在模拟膜充气生物膜反应器(MABR)的硝化和反硝化行为时,考虑生物膜惰性生物量是不可或缺的。如果将惰性生物质考虑在内,氧气和醋酸盐在生物膜厚度上的分布就会明显不同,这说明有必要采用更全面的方法来模拟生物膜行为。引入惰性生物质包容性生物膜模型后,我们的模拟探索了关键工艺条件--氧气($O_{\infty}$)、铵态氮($N_{1\infty}$)、醋酸盐($A_{\infty}$)和生物膜厚度--对 MABR 硝化和反硝化性能的交互影响。较高的氧气和铵态氮容积浓度与最佳硝化率之间存在令人信服的相关性,达到了 0.3 至 1.1 克铵/$m^{2}/d。在深入研究反硝化作用时,我们发现,高$O_{\infty}$、低$N_{1\infty}$以及高或低$A_{\infty}$水平都会阻碍AHB的形成,从而阻碍反硝化作用。我们的研究结果为实现同时硝化和反硝化提供了路线图,取决于特定的条件:$10[gm^{-3}] < O_{\infty}$< 15[gm^{-3}]$, $12[gm^{-3}] < N_{1\infty}< 20[gm^{-3}]$, $A_{\infty}$ 范围从 3[gm^{-3}]$ 到 12[gm^{-3}]$, 以及生物膜厚度 $> 1.4[mm]$.虽然我们的研究揭示了同时硝化和反硝化的可行途径,但在相同条件下,反硝化率仍落后于硝化率。因此,我们主张开展进一步的研究,以制定能够提高 MABR 系统中反硝化作用的策略。总之,本研究通过引入一个综合模型,阐明了驱动 MABRs 中硝化和反硝化性能的关键因素,从而增进了我们对生物膜动力学的了解。这些发现为改进生物膜工程和废水处理策略铺平了道路,为可持续环境实践开辟了新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the role of inert biomass in membrane aerated biofilm reactors for simultaneous nitrification and denitrification
This study presents an innovative 2D spatio-temporal model that sheds light on the intricate formation of biofilms, incorporating two essential biomass decay pathways: cell lysis and endogenous respiration. The model encompasses heterotrophic bacteria (HB), anaerobic heterotrophic bacteria (AHB), and autotrophic bacteria (AB), offering a comprehensive understanding of multi-species biofilm development. Through meticulous simulations, we explore the primary mechanisms behind inert biomass formation in biofilms, revealing the key roles played by the lysis of HB, AHB, and AB, as well as the endogenous respiration of HB. Moreover, the simulations reveal how species of higher abundance contribute significantly to inert biomass generation, reshaping our understanding of biofilm dynamics. Crucially, this study highlights the indispensability of considering biofilm inert biomass when modeling the nitrification and denitrification behaviors of a membrane aerated biofilm reactor (MABR). The distribution of oxygen and acetate across biofilm thickness is remarkably different when inert biomass is factored in, underscoring the necessity for a more holistic approach to modeling biofilm behavior. With the introduction of the inert biomass inclusive biofilm model, our simulations explore the interactive effects of key process conditions - bulk concentrations of oxygen ($O_{\infty}$), ammonium nitrogen ($N_{1\infty}$), acetate ($A_{\infty}$), and biofilm thickness - on the nitrification and denitrification performance of MABR. A compelling correlation emerges between higher bulk concentrations of oxygen and ammonium nitrogen and optimal nitrification rates, achieving an impressive range of 0.3 to 1.1 g ammonium/$m^{2}/d. Delving into denitrification, we observe that high $O_{\infty}$, low $N_{1\infty}$, and either high or low $A_{\infty}$ levels impede AHB formation and consequently hinder denitrification. Our findings provide a roadmap for achieving simultaneous nitrification and denitrification, contingent on specific conditions: $10[gm^{-3}] < O_{\infty} < 15[gm^{-3}]$, $12[gm^{-3}] < N_{1\infty} < 20[gm^{-3}]$, $A_{\infty}$ ranging from $3[gm^{-3}]$ to $12[gm^{-3}]$, and a biofilm thickness $> 1.4[mm]$. While our study reveals promising avenues for simultaneous nitrification and denitrification, denitrification rates still lag behind nitrification rates under the same conditions. As a result, we advocate for further investigations to devise strategies that can enhance denitrification in MABR systems. In conclusion, this study advances our knowledge of biofilm dynamics by introducing a comprehensive model and illuminating the key factors driving nitrification and denitrification performance in MABRs. These findings pave the way for improved biofilm engineering and wastewater treatment strategies, opening new horizons for sustainable environmental practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信