构建工程造价预测与多种算法相结合的数学模型

Rufang Zhang
{"title":"构建工程造价预测与多种算法相结合的数学模型","authors":"Rufang Zhang","doi":"10.1680/jsmic.23.00061","DOIUrl":null,"url":null,"abstract":"As a key link in engineering construction, reasonable evaluation of engineering cost can effectively control the budget and save costs. Therefore, the reliability of the engineering cost estimation will directly affect the economic status of the whole project. However, traditional prediction models are based on a single machine learning method, which is not generalized enough and has low accuracy. In view of this, a mathematical model for engineering cost prediction is constructed by combining a random forest algorithm, ridge regression algorithm, and extreme gradient boosting (XG Boost) algorithm to obtain a prediction model with higher generalization and accuracy, and to evaluate the cost of engineering projects reasonably and scientifically. The average relative error between predicted and actual values was only 0.872%. The root mean square error and average percentage error of the fusion model were relatively small. The superiority of the proposed mathematical model of prediction cost is verified, and the model possesses a certain application value in construction engineering, providing practical reference and guidance for engineering cost prediction.","PeriodicalId":510830,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction","volume":"120 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of mathematical model for integration of engineering cost prediction and multiple algorithms\",\"authors\":\"Rufang Zhang\",\"doi\":\"10.1680/jsmic.23.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key link in engineering construction, reasonable evaluation of engineering cost can effectively control the budget and save costs. Therefore, the reliability of the engineering cost estimation will directly affect the economic status of the whole project. However, traditional prediction models are based on a single machine learning method, which is not generalized enough and has low accuracy. In view of this, a mathematical model for engineering cost prediction is constructed by combining a random forest algorithm, ridge regression algorithm, and extreme gradient boosting (XG Boost) algorithm to obtain a prediction model with higher generalization and accuracy, and to evaluate the cost of engineering projects reasonably and scientifically. The average relative error between predicted and actual values was only 0.872%. The root mean square error and average percentage error of the fusion model were relatively small. The superiority of the proposed mathematical model of prediction cost is verified, and the model possesses a certain application value in construction engineering, providing practical reference and guidance for engineering cost prediction.\",\"PeriodicalId\":510830,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction\",\"volume\":\"120 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jsmic.23.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jsmic.23.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工程造价作为工程建设中的关键环节,合理的工程造价评估可以有效控制预算,节约成本。因此,工程造价估算的可靠性将直接影响整个项目的经济状况。然而,传统的预测模型都是基于单一的机器学习方法,通用性不够,准确性较低。有鉴于此,本文结合随机森林算法、脊回归算法和极梯度提升(XG Boost)算法,构建了工程造价预测数学模型,以获得概括性和准确性更高的预测模型,合理、科学地评估工程项目的造价。预测值与实际值的平均相对误差仅为 0.872%。融合模型的均方根误差和平均百分比误差相对较小。验证了所提出的工程造价预测数学模型的优越性,该模型在建筑工程中具有一定的应用价值,为工程造价预测提供了切实可行的参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of mathematical model for integration of engineering cost prediction and multiple algorithms
As a key link in engineering construction, reasonable evaluation of engineering cost can effectively control the budget and save costs. Therefore, the reliability of the engineering cost estimation will directly affect the economic status of the whole project. However, traditional prediction models are based on a single machine learning method, which is not generalized enough and has low accuracy. In view of this, a mathematical model for engineering cost prediction is constructed by combining a random forest algorithm, ridge regression algorithm, and extreme gradient boosting (XG Boost) algorithm to obtain a prediction model with higher generalization and accuracy, and to evaluate the cost of engineering projects reasonably and scientifically. The average relative error between predicted and actual values was only 0.872%. The root mean square error and average percentage error of the fusion model were relatively small. The superiority of the proposed mathematical model of prediction cost is verified, and the model possesses a certain application value in construction engineering, providing practical reference and guidance for engineering cost prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信