通过勒奇zeta函数的移动对解析函数进行联合离散逼近

IF 1.6 3区 数学 Q1 MATHEMATICS
A. Laurinčikas, Toma Mikalauskaitė, D. Šiaučiūnas
{"title":"通过勒奇zeta函数的移动对解析函数进行联合离散逼近","authors":"A. Laurinčikas, Toma Mikalauskaitė, D. Šiaučiūnas","doi":"10.3846/mma.2024.19493","DOIUrl":null,"url":null,"abstract":"The Lerch zeta-function $L(\\lambda, \\alpha,s)$, $s=\\sigma+it$, depends on two real parameters $\\lambda$ and $0<\\alpha\\leqslant 1$, and, for $\\sigma>1$, is defined by the Dirichlet series $\\sum_{m=0}^\\infty \\ee^{2\\pi i\\lambda m} (m+\\alpha)^{-s}$, and by analytic continuation elsewhere. In the paper, we consider the joint approximation of collections of analytic functions by discrete shifts $(L(\\lambda_1, \\alpha_1, s+ikh_1), \\dots, L(\\lambda_r, \\alpha_r, s+ikh_r))$, $k=0, 1, \\dots$, with arbitrary $\\lambda_j$, $0<\\alpha_j\\leqslant 1$ and $h_j>0$, $j=1, \\dots, r$. We prove that there exists a non-empty closed set of analytic functions on the critical strip $1/2<\\sigma<1$ which is approximated by the above shifts. It is proved that the set of shifts approximating a given collection of analytic functions has a positive lower density. The case of positive density also is discussed. A generalization for some compositions is given.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JOINT DISCRETE APPROXIMATION OF ANALYTIC FUNCTIONS BY SHIFTS OF LERCH ZETA-FUNCTIONS\",\"authors\":\"A. Laurinčikas, Toma Mikalauskaitė, D. Šiaučiūnas\",\"doi\":\"10.3846/mma.2024.19493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lerch zeta-function $L(\\\\lambda, \\\\alpha,s)$, $s=\\\\sigma+it$, depends on two real parameters $\\\\lambda$ and $0<\\\\alpha\\\\leqslant 1$, and, for $\\\\sigma>1$, is defined by the Dirichlet series $\\\\sum_{m=0}^\\\\infty \\\\ee^{2\\\\pi i\\\\lambda m} (m+\\\\alpha)^{-s}$, and by analytic continuation elsewhere. In the paper, we consider the joint approximation of collections of analytic functions by discrete shifts $(L(\\\\lambda_1, \\\\alpha_1, s+ikh_1), \\\\dots, L(\\\\lambda_r, \\\\alpha_r, s+ikh_r))$, $k=0, 1, \\\\dots$, with arbitrary $\\\\lambda_j$, $0<\\\\alpha_j\\\\leqslant 1$ and $h_j>0$, $j=1, \\\\dots, r$. We prove that there exists a non-empty closed set of analytic functions on the critical strip $1/2<\\\\sigma<1$ which is approximated by the above shifts. It is proved that the set of shifts approximating a given collection of analytic functions has a positive lower density. The case of positive density also is discussed. A generalization for some compositions is given.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.19493\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.19493","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Lerch zeta 函数 $L(\lambda,\alpha,s)$,$s=\sigma+it$,依赖于两个实参数 $\lambda$ 和 $01$,由 Dirichlet 数列 $sum_{m=0}^\infty \ee^{2\pi i\lambda m} (m+\alpha)^{-s}$ 定义,并在其他地方进行解析延续。在本文中,我们考虑通过离散移位 $(L(\lambda_1,\alpha_1,s+ikh_1),\dots,L(\lambda_r,\alpha_r,s+ikh_r))$,$k=0, 1, \dots$,任意 $\lambda_j$, $00$, $j=1,\dots,r$来联合逼近解析函数集合。我们证明在临界带 $1/2<\sigma<1$ 上存在一个非空的封闭的解析函数集合,该集合由上述移项近似。证明了近似于给定解析函数集合的移位集合具有正的低密度。还讨论了正密度的情况。给出了某些组合的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JOINT DISCRETE APPROXIMATION OF ANALYTIC FUNCTIONS BY SHIFTS OF LERCH ZETA-FUNCTIONS
The Lerch zeta-function $L(\lambda, \alpha,s)$, $s=\sigma+it$, depends on two real parameters $\lambda$ and $0<\alpha\leqslant 1$, and, for $\sigma>1$, is defined by the Dirichlet series $\sum_{m=0}^\infty \ee^{2\pi i\lambda m} (m+\alpha)^{-s}$, and by analytic continuation elsewhere. In the paper, we consider the joint approximation of collections of analytic functions by discrete shifts $(L(\lambda_1, \alpha_1, s+ikh_1), \dots, L(\lambda_r, \alpha_r, s+ikh_r))$, $k=0, 1, \dots$, with arbitrary $\lambda_j$, $0<\alpha_j\leqslant 1$ and $h_j>0$, $j=1, \dots, r$. We prove that there exists a non-empty closed set of analytic functions on the critical strip $1/2<\sigma<1$ which is approximated by the above shifts. It is proved that the set of shifts approximating a given collection of analytic functions has a positive lower density. The case of positive density also is discussed. A generalization for some compositions is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信