有界域多孔介质方程的最优正则性和精细渐近线

Tianling Jin, Xavier Ros-Oton, Jingang Xiong
{"title":"有界域多孔介质方程的最优正则性和精细渐近线","authors":"Tianling Jin, Xavier Ros-Oton, Jingang Xiong","doi":"10.1515/crelle-2024-0014","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We prove the optimal global regularity of nonnegative solutions to the porous medium equation in smooth bounded domains with the zero Dirichlet boundary condition after certain waiting time <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>T</m:mi>\n <m:mo>*</m:mo>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0436.png\" />\n <jats:tex-math>{T^{*}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nMore precisely, we show that solutions are <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:msup>\n <m:mi>C</m:mi>\n <m:mrow>\n <m:mn>2</m:mn>\n <m:mo>,</m:mo>\n <m:mi>α</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mover accent=\"true\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>¯</m:mo>\n </m:mover>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0398.png\" />\n <jats:tex-math>{C^{2,\\alpha}(\\overline{\\Omega})}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> in space, with <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>α</m:mi>\n <m:mo>=</m:mo>\n <m:mfrac>\n <m:mn>1</m:mn>\n <m:mi>m</m:mi>\n </m:mfrac>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0460.png\" />\n <jats:tex-math>{\\alpha=\\frac{1}{m}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>C</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0401.png\" />\n <jats:tex-math>{C^{\\infty}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> in time (uniformly in <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:mover accent=\"true\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>¯</m:mo>\n </m:mover>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0732.png\" />\n <jats:tex-math>{x\\in\\overline{\\Omega}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>), for <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>t</m:mi>\n <m:mo>></m:mo>\n <m:msup>\n <m:mi>T</m:mi>\n <m:mo>*</m:mo>\n </m:msup>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0670.png\" />\n <jats:tex-math>{t>T^{*}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nFurthermore, this allows us to refine the asymptotics of solutions for large times, improving the best known results so far in two ways: we establish a faster rate of convergence <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>O</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>t</m:mi>\n <m:mrow>\n <m:mrow>\n <m:mo>-</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo>-</m:mo>\n <m:mi>γ</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0421.png\" />\n <jats:tex-math>{O(t^{-1-\\gamma})}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and we prove that the convergence holds in the <jats:inline-formula id=\"j_crelle-2024-0014_ineq_9992\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:msup>\n <m:mi>C</m:mi>\n <m:mrow>\n <m:mn>1</m:mn>\n <m:mo>,</m:mo>\n <m:mi>α</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mover accent=\"true\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>¯</m:mo>\n </m:mover>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0014_eq_0393.png\" />\n <jats:tex-math>{C^{1,\\alpha}(\\overline{\\Omega})}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> topology.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"39 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal regularity and fine asymptotics for the porous medium equation in bounded domains\",\"authors\":\"Tianling Jin, Xavier Ros-Oton, Jingang Xiong\",\"doi\":\"10.1515/crelle-2024-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>We prove the optimal global regularity of nonnegative solutions to the porous medium equation in smooth bounded domains with the zero Dirichlet boundary condition after certain waiting time <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9999\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi>T</m:mi>\\n <m:mo>*</m:mo>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0436.png\\\" />\\n <jats:tex-math>{T^{*}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>.\\nMore precisely, we show that solutions are <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9998\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:msup>\\n <m:mi>C</m:mi>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n <m:mo>,</m:mo>\\n <m:mi>α</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>⁢</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mover accent=\\\"true\\\">\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>¯</m:mo>\\n </m:mover>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0398.png\\\" />\\n <jats:tex-math>{C^{2,\\\\alpha}(\\\\overline{\\\\Omega})}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> in space, with <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9997\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>α</m:mi>\\n <m:mo>=</m:mo>\\n <m:mfrac>\\n <m:mn>1</m:mn>\\n <m:mi>m</m:mi>\\n </m:mfrac>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0460.png\\\" />\\n <jats:tex-math>{\\\\alpha=\\\\frac{1}{m}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9996\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi>C</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0401.png\\\" />\\n <jats:tex-math>{C^{\\\\infty}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> in time (uniformly in <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9995\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>x</m:mi>\\n <m:mo>∈</m:mo>\\n <m:mover accent=\\\"true\\\">\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>¯</m:mo>\\n </m:mover>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0732.png\\\" />\\n <jats:tex-math>{x\\\\in\\\\overline{\\\\Omega}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>), for <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9994\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>t</m:mi>\\n <m:mo>></m:mo>\\n <m:msup>\\n <m:mi>T</m:mi>\\n <m:mo>*</m:mo>\\n </m:msup>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0670.png\\\" />\\n <jats:tex-math>{t>T^{*}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>.\\nFurthermore, this allows us to refine the asymptotics of solutions for large times, improving the best known results so far in two ways: we establish a faster rate of convergence <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9993\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>O</m:mi>\\n <m:mo>⁢</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:msup>\\n <m:mi>t</m:mi>\\n <m:mrow>\\n <m:mrow>\\n <m:mo>-</m:mo>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mo>-</m:mo>\\n <m:mi>γ</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0421.png\\\" />\\n <jats:tex-math>{O(t^{-1-\\\\gamma})}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and we prove that the convergence holds in the <jats:inline-formula id=\\\"j_crelle-2024-0014_ineq_9992\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:msup>\\n <m:mi>C</m:mi>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n <m:mo>,</m:mo>\\n <m:mi>α</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>⁢</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mover accent=\\\"true\\\">\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>¯</m:mo>\\n </m:mover>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0014_eq_0393.png\\\" />\\n <jats:tex-math>{C^{1,\\\\alpha}(\\\\overline{\\\\Omega})}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> topology.</jats:p>\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了多孔介质方程在光滑有界域中的非负解的最优全局正则性,该方程具有零 Dirichlet 边界条件,经过一定的等待时间 T * {T^{*}} 。 更确切地说,我们证明解是 C 2 , α ( Ω¯ ) {C^{2,\alpha}(\overline{Omega})} 在空间中,α = 1 m {\alpha=\frac{1}{m}} 在时间上,C ∞ {C^{infty}} (在 x∈ Ω ¯ {x\in\overline{Omega}} 中均匀分布)。 ),对于 t > T * {t>T^{*}} 。 此外,这使我们能够完善大时间解的渐近性,从两个方面改进了迄今已知的最佳结果:我们建立了一个更快的收敛速率 O ( t - 1 - γ ) {O(t^{-1-\gamma})}。 我们证明收敛在 C 1 , α ( Ω ¯ ) 中成立 {C^{1,\alpha}(\overline{\Omega})} 拓扑中收敛成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal regularity and fine asymptotics for the porous medium equation in bounded domains
We prove the optimal global regularity of nonnegative solutions to the porous medium equation in smooth bounded domains with the zero Dirichlet boundary condition after certain waiting time T * {T^{*}} . More precisely, we show that solutions are C 2 , α ( Ω ¯ ) {C^{2,\alpha}(\overline{\Omega})} in space, with α = 1 m {\alpha=\frac{1}{m}} , and C {C^{\infty}} in time (uniformly in x Ω ¯ {x\in\overline{\Omega}} ), for t > T * {t>T^{*}} . Furthermore, this allows us to refine the asymptotics of solutions for large times, improving the best known results so far in two ways: we establish a faster rate of convergence O ( t - 1 - γ ) {O(t^{-1-\gamma})} , and we prove that the convergence holds in the C 1 , α ( Ω ¯ ) {C^{1,\alpha}(\overline{\Omega})} topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信