{"title":"微极性流体在垂直中空圆柱上的共轭混合对流","authors":"Alliche Sid Ahmed, Bennia Ayoub, Bouaziz Mohamed Najib, Bouaziz Amina Manal","doi":"10.59441/ijame/181643","DOIUrl":null,"url":null,"abstract":"This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"78 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder\",\"authors\":\"Alliche Sid Ahmed, Bennia Ayoub, Bouaziz Mohamed Najib, Bouaziz Amina Manal\",\"doi\":\"10.59441/ijame/181643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"78 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/181643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/181643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder
This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.
期刊介绍:
INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.