电子学习平台中的学生表情检测

K. Sai Bhavya Sri, K. Sai Swetha, K. Bhavani, M. Venkata Sahitya, Naga Babu Pachhala
{"title":"电子学习平台中的学生表情检测","authors":"K. Sai Bhavya Sri, K. Sai Swetha, K. Bhavani, M. Venkata Sahitya, Naga Babu Pachhala","doi":"10.36713/epra16128","DOIUrl":null,"url":null,"abstract":"Our research suggests a deep learning method for determining how engaged students are with their online courses. Our method makes use of convolutional neural networks (CNNs) to interpret facial expressions that are recorded via webcams during online conversations. To provide the best possible model input, we preprocess face photos and select a varied dataset. The CNN architecture captures both spatial and temporal dependencies, enhancing engagement level detection accuracy. Our model performs well in classifying expressions that indicate curious, distracted, enthusiastic, observant, uninterested through training and validation. In conclusion, that the online learning experience may be enhanced by using deep learning algorithms for engagement detection, making it more advantageous and successful for students.\nKEYWORDS – CNN, Webcams, Engagement level, Online learning, Deep Learning, Facial expressions","PeriodicalId":114964,"journal":{"name":"EPRA International Journal of Research & Development (IJRD)","volume":"75 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDENT EXPRESSION DETECTION IN E-LEARNING PLATFORMS\",\"authors\":\"K. Sai Bhavya Sri, K. Sai Swetha, K. Bhavani, M. Venkata Sahitya, Naga Babu Pachhala\",\"doi\":\"10.36713/epra16128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research suggests a deep learning method for determining how engaged students are with their online courses. Our method makes use of convolutional neural networks (CNNs) to interpret facial expressions that are recorded via webcams during online conversations. To provide the best possible model input, we preprocess face photos and select a varied dataset. The CNN architecture captures both spatial and temporal dependencies, enhancing engagement level detection accuracy. Our model performs well in classifying expressions that indicate curious, distracted, enthusiastic, observant, uninterested through training and validation. In conclusion, that the online learning experience may be enhanced by using deep learning algorithms for engagement detection, making it more advantageous and successful for students.\\nKEYWORDS – CNN, Webcams, Engagement level, Online learning, Deep Learning, Facial expressions\",\"PeriodicalId\":114964,\"journal\":{\"name\":\"EPRA International Journal of Research & Development (IJRD)\",\"volume\":\"75 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPRA International Journal of Research & Development (IJRD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36713/epra16128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPRA International Journal of Research & Development (IJRD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36713/epra16128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究提出了一种深度学习方法,用于确定学生对在线课程的参与程度。我们的方法利用卷积神经网络(CNN)来解释在线对话期间通过网络摄像头记录的面部表情。为了提供最佳的模型输入,我们对面部照片进行了预处理,并选择了不同的数据集。CNN 架构可捕捉空间和时间相关性,从而提高参与度检测的准确性。通过训练和验证,我们的模型在对表示好奇、分心、热情、观察、不感兴趣的表情进行分类方面表现良好。总之,使用深度学习算法进行参与度检测可以增强在线学习体验,使其对学生更有利、更成功。 关键词 - CNN 网络摄像头 参与度 在线学习 深度学习 面部表情
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDENT EXPRESSION DETECTION IN E-LEARNING PLATFORMS
Our research suggests a deep learning method for determining how engaged students are with their online courses. Our method makes use of convolutional neural networks (CNNs) to interpret facial expressions that are recorded via webcams during online conversations. To provide the best possible model input, we preprocess face photos and select a varied dataset. The CNN architecture captures both spatial and temporal dependencies, enhancing engagement level detection accuracy. Our model performs well in classifying expressions that indicate curious, distracted, enthusiastic, observant, uninterested through training and validation. In conclusion, that the online learning experience may be enhanced by using deep learning algorithms for engagement detection, making it more advantageous and successful for students. KEYWORDS – CNN, Webcams, Engagement level, Online learning, Deep Learning, Facial expressions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信