基于三条拟合性能曲线的风力发电机状态监测

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shuo Zhang, Emma Robinson, Malabika Basu
{"title":"基于三条拟合性能曲线的风力发电机状态监测","authors":"Shuo Zhang, Emma Robinson, Malabika Basu","doi":"10.1002/we.2859","DOIUrl":null,"url":null,"abstract":"Based on SCADA data, this study aims at fitting three performance curves (PCs), power curve, pitch angle curve, and rotor speed curve, to accurately describe the normal behaviour of a wind turbine (WT) for performance monitoring and identification of anomalous signals. The fitting accuracy can be undesirably affected by erroneous SCADA data. Hence, outliers generated from raw SCADA data should be removed to mitigate the prediction inaccuracy, so various outlier detection (OD) approaches are compared in terms of area under the curve (AUC) and mean average precision (mAP). Among them, a novel unsupervised SVM‐KNN model, integrated by support vector machine (SVM) and k nearest neighbour (KNN), is the optimum detector for PC refinements. Based on the refined data by the SVM‐KNN detector, several common nonparametric regressors have largely improved their prediction accuracies on pitch angle and rotor speed curves from roughly 86% and 90.6%, respectively, (raw data) to both 99% (refined data). Noticeably, under the SVM‐KNN refinement, the errors have been reduced by roughly five times and 10 times for pitch angle and rotor speed predictions, respectively. Ultimately, bootstrapped prediction interval is applied to conduct the uncertainty analysis of the optimal predictive regression model, reinforcing the performance monitoring and anomaly detection.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind turbine condition monitoring based on three fitted performance curves\",\"authors\":\"Shuo Zhang, Emma Robinson, Malabika Basu\",\"doi\":\"10.1002/we.2859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on SCADA data, this study aims at fitting three performance curves (PCs), power curve, pitch angle curve, and rotor speed curve, to accurately describe the normal behaviour of a wind turbine (WT) for performance monitoring and identification of anomalous signals. The fitting accuracy can be undesirably affected by erroneous SCADA data. Hence, outliers generated from raw SCADA data should be removed to mitigate the prediction inaccuracy, so various outlier detection (OD) approaches are compared in terms of area under the curve (AUC) and mean average precision (mAP). Among them, a novel unsupervised SVM‐KNN model, integrated by support vector machine (SVM) and k nearest neighbour (KNN), is the optimum detector for PC refinements. Based on the refined data by the SVM‐KNN detector, several common nonparametric regressors have largely improved their prediction accuracies on pitch angle and rotor speed curves from roughly 86% and 90.6%, respectively, (raw data) to both 99% (refined data). Noticeably, under the SVM‐KNN refinement, the errors have been reduced by roughly five times and 10 times for pitch angle and rotor speed predictions, respectively. Ultimately, bootstrapped prediction interval is applied to conduct the uncertainty analysis of the optimal predictive regression model, reinforcing the performance monitoring and anomaly detection.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2859\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2859","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于 SCADA 数据,本研究旨在拟合三条性能曲线 (PC),即功率曲线、变桨角曲线和转子速度曲线,以准确描述风力涡轮机 (WT) 的正常行为,用于性能监控和异常信号识别。拟合精度可能会受到错误 SCADA 数据的不良影响。因此,应去除原始 SCADA 数据中产生的离群值,以减少预测的不准确性,因此从曲线下面积(AUC)和平均精度(mAP)的角度对各种离群值检测(OD)方法进行了比较。其中,由支持向量机(SVM)和 k 近邻(KNN)集成的新型无监督 SVM-KNN 模型是 PC 精化的最佳检测器。基于 SVM-KNN 检测器的精炼数据,几种常见的非参数回归器在很大程度上提高了对螺距角和转子速度曲线的预测精度,分别从大约 86% 和 90.6%(原始数据)提高到 99%(精炼数据)。值得注意的是,在 SVM-KNN 改进下,俯仰角和转子速度预测误差分别降低了约 5 倍和 10 倍。最后,应用引导预测区间对最优预测回归模型进行不确定性分析,加强了性能监测和异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind turbine condition monitoring based on three fitted performance curves
Based on SCADA data, this study aims at fitting three performance curves (PCs), power curve, pitch angle curve, and rotor speed curve, to accurately describe the normal behaviour of a wind turbine (WT) for performance monitoring and identification of anomalous signals. The fitting accuracy can be undesirably affected by erroneous SCADA data. Hence, outliers generated from raw SCADA data should be removed to mitigate the prediction inaccuracy, so various outlier detection (OD) approaches are compared in terms of area under the curve (AUC) and mean average precision (mAP). Among them, a novel unsupervised SVM‐KNN model, integrated by support vector machine (SVM) and k nearest neighbour (KNN), is the optimum detector for PC refinements. Based on the refined data by the SVM‐KNN detector, several common nonparametric regressors have largely improved their prediction accuracies on pitch angle and rotor speed curves from roughly 86% and 90.6%, respectively, (raw data) to both 99% (refined data). Noticeably, under the SVM‐KNN refinement, the errors have been reduced by roughly five times and 10 times for pitch angle and rotor speed predictions, respectively. Ultimately, bootstrapped prediction interval is applied to conduct the uncertainty analysis of the optimal predictive regression model, reinforcing the performance monitoring and anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信