使用偏斜随机漫步二叉树进行期权定价

Yuan Hu, W. B. Lindquist, S. Rachev, Frank J. Fabozzi
{"title":"使用偏斜随机漫步二叉树进行期权定价","authors":"Yuan Hu, W. B. Lindquist, S. Rachev, Frank J. Fabozzi","doi":"10.3390/jrfm17040138","DOIUrl":null,"url":null,"abstract":"We develop a binary tree pricing model with underlying asset price dynamics following Itô–McKean skew Brownian motion. Our work was motivated by the Corns–Satchell, continuous-time, option pricing model. However, the Corns–Satchell market model is incomplete, while our discrete-time market model is defined in the natural world, extended to the risk-neutral world under the no-arbitrage condition where derivatives are priced under uniquely determined risk-neutral probabilities, and is complete. The skewness introduced in the natural world is preserved in the risk-neutral world. Furthermore, we show that the model preserves skewness under the continuous-time limit. We provide empirical applications of our model to the valuation of European put and call options on exchange-traded funds tracking the S&P Global 1200 index.","PeriodicalId":508146,"journal":{"name":"Journal of Risk and Financial Management","volume":"95 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option Pricing Using a Skew Random Walk Binary Tree\",\"authors\":\"Yuan Hu, W. B. Lindquist, S. Rachev, Frank J. Fabozzi\",\"doi\":\"10.3390/jrfm17040138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a binary tree pricing model with underlying asset price dynamics following Itô–McKean skew Brownian motion. Our work was motivated by the Corns–Satchell, continuous-time, option pricing model. However, the Corns–Satchell market model is incomplete, while our discrete-time market model is defined in the natural world, extended to the risk-neutral world under the no-arbitrage condition where derivatives are priced under uniquely determined risk-neutral probabilities, and is complete. The skewness introduced in the natural world is preserved in the risk-neutral world. Furthermore, we show that the model preserves skewness under the continuous-time limit. We provide empirical applications of our model to the valuation of European put and call options on exchange-traded funds tracking the S&P Global 1200 index.\",\"PeriodicalId\":508146,\"journal\":{\"name\":\"Journal of Risk and Financial Management\",\"volume\":\"95 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk and Financial Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jrfm17040138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Financial Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jrfm17040138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个二叉树定价模型,其基础资产价格动态遵循伊托-麦克金倾斜布朗运动。我们的工作受到 Corns-Satchell 连续时间期权定价模型的启发。然而,Corns-Satchell 市场模型是不完整的,而我们的离散时间市场模型是在自然世界中定义的,在无套利条件下扩展到风险中性世界,即衍生品是在唯一确定的风险中性概率下定价的,并且是完整的。自然世界中引入的偏斜性在风险中性世界中得以保留。此外,我们还证明了该模型在连续时间限制下保留了偏斜性。我们将模型实证应用于跟踪标普全球 1200 指数的交易所交易基金的欧洲看跌期权和看涨期权的估值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option Pricing Using a Skew Random Walk Binary Tree
We develop a binary tree pricing model with underlying asset price dynamics following Itô–McKean skew Brownian motion. Our work was motivated by the Corns–Satchell, continuous-time, option pricing model. However, the Corns–Satchell market model is incomplete, while our discrete-time market model is defined in the natural world, extended to the risk-neutral world under the no-arbitrage condition where derivatives are priced under uniquely determined risk-neutral probabilities, and is complete. The skewness introduced in the natural world is preserved in the risk-neutral world. Furthermore, we show that the model preserves skewness under the continuous-time limit. We provide empirical applications of our model to the valuation of European put and call options on exchange-traded funds tracking the S&P Global 1200 index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信