K. Jang, Dukyoung Kim, Yujin Oh, Sejin Lim, Yujin Yang, Hyunji Kim, Hwajeong Seo
{"title":"AIM 的量子实现:以低深度为目标","authors":"K. Jang, Dukyoung Kim, Yujin Oh, Sejin Lim, Yujin Yang, Hyunji Kim, Hwajeong Seo","doi":"10.3390/app14072824","DOIUrl":null,"url":null,"abstract":"Security vulnerabilities in the symmetric-key primitives of a cipher can undermine the overall security claims of the cipher. With the rapid advancement of quantum computing in recent years, there is an increasing effort to evaluate the security of symmetric-key cryptography against potential quantum attacks. This paper focuses on analyzing the quantum attack resistance of AIM, a symmetric-key primitive used in the AIMer digital signature scheme. We present the first quantum circuit implementation of AIM and estimate its complexity (such as qubit count, gate count, and circuit depth) with respect to Grover’s search algorithm. For Grover’s key search, the most important optimization metric is depth, especially when considering parallel search. Our implementation gathers multiple methods for a low-depth quantum circuit of AIM in order to reduce the Toffoli depth and full depth (such as the Karatsuba multiplication and optimization of inner modules; Mer, LinearLayer).","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"46 17","pages":"337"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Implementation of AIM: Aiming for Low-Depth\",\"authors\":\"K. Jang, Dukyoung Kim, Yujin Oh, Sejin Lim, Yujin Yang, Hyunji Kim, Hwajeong Seo\",\"doi\":\"10.3390/app14072824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security vulnerabilities in the symmetric-key primitives of a cipher can undermine the overall security claims of the cipher. With the rapid advancement of quantum computing in recent years, there is an increasing effort to evaluate the security of symmetric-key cryptography against potential quantum attacks. This paper focuses on analyzing the quantum attack resistance of AIM, a symmetric-key primitive used in the AIMer digital signature scheme. We present the first quantum circuit implementation of AIM and estimate its complexity (such as qubit count, gate count, and circuit depth) with respect to Grover’s search algorithm. For Grover’s key search, the most important optimization metric is depth, especially when considering parallel search. Our implementation gathers multiple methods for a low-depth quantum circuit of AIM in order to reduce the Toffoli depth and full depth (such as the Karatsuba multiplication and optimization of inner modules; Mer, LinearLayer).\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"46 17\",\"pages\":\"337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14072824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14072824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum Implementation of AIM: Aiming for Low-Depth
Security vulnerabilities in the symmetric-key primitives of a cipher can undermine the overall security claims of the cipher. With the rapid advancement of quantum computing in recent years, there is an increasing effort to evaluate the security of symmetric-key cryptography against potential quantum attacks. This paper focuses on analyzing the quantum attack resistance of AIM, a symmetric-key primitive used in the AIMer digital signature scheme. We present the first quantum circuit implementation of AIM and estimate its complexity (such as qubit count, gate count, and circuit depth) with respect to Grover’s search algorithm. For Grover’s key search, the most important optimization metric is depth, especially when considering parallel search. Our implementation gathers multiple methods for a low-depth quantum circuit of AIM in order to reduce the Toffoli depth and full depth (such as the Karatsuba multiplication and optimization of inner modules; Mer, LinearLayer).