{"title":"量子等离子体通道中的唤醒场非线性激发","authors":"Punit Kumar, Chhaya Tewari","doi":"10.1142/s0217979225500432","DOIUrl":null,"url":null,"abstract":"A detailed analytical study for wakefields excitation in a channel of quantum plasma is presented. The recently developed quantum hydrodynamic (QHD) model has been used to develop the interaction picture. Applying the perturbations in the laser fields orders, the magnetic and electric wakefields have been obtained for a Gaussian laser pulse. The electrons trapped by the wakefields are accelerated to extremely high energies. The quantum effects of Fermi statistical pressure and the quantum Bohm potential have been found to make significant changes in the nature of wakefields generated. The plasma channel helps in self-focusing and also contributes to acceleration. Both the longitudinal and transverse forces acting on the accelerating electron have been calculated.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":"32 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear excitation of wakefields in quantum plasma channel\",\"authors\":\"Punit Kumar, Chhaya Tewari\",\"doi\":\"10.1142/s0217979225500432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed analytical study for wakefields excitation in a channel of quantum plasma is presented. The recently developed quantum hydrodynamic (QHD) model has been used to develop the interaction picture. Applying the perturbations in the laser fields orders, the magnetic and electric wakefields have been obtained for a Gaussian laser pulse. The electrons trapped by the wakefields are accelerated to extremely high energies. The quantum effects of Fermi statistical pressure and the quantum Bohm potential have been found to make significant changes in the nature of wakefields generated. The plasma channel helps in self-focusing and also contributes to acceleration. Both the longitudinal and transverse forces acting on the accelerating electron have been calculated.\",\"PeriodicalId\":509298,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"32 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979225500432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear excitation of wakefields in quantum plasma channel
A detailed analytical study for wakefields excitation in a channel of quantum plasma is presented. The recently developed quantum hydrodynamic (QHD) model has been used to develop the interaction picture. Applying the perturbations in the laser fields orders, the magnetic and electric wakefields have been obtained for a Gaussian laser pulse. The electrons trapped by the wakefields are accelerated to extremely high energies. The quantum effects of Fermi statistical pressure and the quantum Bohm potential have been found to make significant changes in the nature of wakefields generated. The plasma channel helps in self-focusing and also contributes to acceleration. Both the longitudinal and transverse forces acting on the accelerating electron have been calculated.