以二氧化钼(MoO2Cl2)为前驱体,通过原子层沉积法沉积的低电阻率钼金属薄膜的特性

So Young Kim, Chunghee Jo, Hyerin Shin, D. Yoon, D. Shin, Min-ho Cheon, Kyu-beom Lee, D. Seo, Jae-wook Choi, Heungsoo Park, Dae-Hong Ko
{"title":"以二氧化钼(MoO2Cl2)为前驱体,通过原子层沉积法沉积的低电阻率钼金属薄膜的特性","authors":"So Young Kim, Chunghee Jo, Hyerin Shin, D. Yoon, D. Shin, Min-ho Cheon, Kyu-beom Lee, D. Seo, Jae-wook Choi, Heungsoo Park, Dae-Hong Ko","doi":"10.1116/6.0003361","DOIUrl":null,"url":null,"abstract":"Challenges have arisen in selecting suitable candidates for interconnects and metal contacts due to the exponential increase in metal resistivity at scaled pitches. Molybdenum (Mo) has emerged as a promising alternative to the traditional metals such as copper or tungsten owing to its low electrical resistivity and electron mean free path. In this study, we investigated the formation of a molybdenum film grown by thermal atomic layer deposition (ALD) using a MoO2Cl2 solid precursor and H2 and NH3 gases as the reducing agents. A molybdenum nitride film served as the seed layer on a SiO2 substrate before molybdenum film deposition. The analysis focused on the film's phase, morphology, chemical bonding states, and resistivity across various thicknesses. X-ray diffraction (XRD) confirmed the presence of polycrystalline BCC planes. Our analyses confirmed the successful growth of the molybdenum metal thin film, which, at a thickness of 10 nm, exhibited a record-low resistivity of approximately 13 μΩ cm.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"52 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of low-resistivity molybdenum metal thin film deposited by atomic layer deposition using MoO2Cl2 as precursor\",\"authors\":\"So Young Kim, Chunghee Jo, Hyerin Shin, D. Yoon, D. Shin, Min-ho Cheon, Kyu-beom Lee, D. Seo, Jae-wook Choi, Heungsoo Park, Dae-Hong Ko\",\"doi\":\"10.1116/6.0003361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Challenges have arisen in selecting suitable candidates for interconnects and metal contacts due to the exponential increase in metal resistivity at scaled pitches. Molybdenum (Mo) has emerged as a promising alternative to the traditional metals such as copper or tungsten owing to its low electrical resistivity and electron mean free path. In this study, we investigated the formation of a molybdenum film grown by thermal atomic layer deposition (ALD) using a MoO2Cl2 solid precursor and H2 and NH3 gases as the reducing agents. A molybdenum nitride film served as the seed layer on a SiO2 substrate before molybdenum film deposition. The analysis focused on the film's phase, morphology, chemical bonding states, and resistivity across various thicknesses. X-ray diffraction (XRD) confirmed the presence of polycrystalline BCC planes. Our analyses confirmed the successful growth of the molybdenum metal thin film, which, at a thickness of 10 nm, exhibited a record-low resistivity of approximately 13 μΩ cm.\",\"PeriodicalId\":170900,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"52 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于金属电阻率在按比例调整间距时呈指数级增长,因此在为互连器件和金属触点选择合适的候选材料时遇到了挑战。钼(Mo)因其低电阻率和电子平均自由路径,已成为铜或钨等传统金属的理想替代品。在这项研究中,我们研究了使用二氧化钼(MoO2Cl2)固体前驱体以及 H2 和 NH3 气体作为还原剂,通过热原子层沉积(ALD)技术形成的钼薄膜。在钼薄膜沉积之前,在二氧化硅基底上以氮化钼薄膜作为种子层。分析的重点是不同厚度薄膜的相位、形态、化学键状态和电阻率。X 射线衍射 (XRD) 证实了多晶 BCC 平面的存在。我们的分析证实了金属钼薄膜的成功生长,其厚度为 10 纳米时的电阻率约为 13 μΩ cm,创历史新低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of low-resistivity molybdenum metal thin film deposited by atomic layer deposition using MoO2Cl2 as precursor
Challenges have arisen in selecting suitable candidates for interconnects and metal contacts due to the exponential increase in metal resistivity at scaled pitches. Molybdenum (Mo) has emerged as a promising alternative to the traditional metals such as copper or tungsten owing to its low electrical resistivity and electron mean free path. In this study, we investigated the formation of a molybdenum film grown by thermal atomic layer deposition (ALD) using a MoO2Cl2 solid precursor and H2 and NH3 gases as the reducing agents. A molybdenum nitride film served as the seed layer on a SiO2 substrate before molybdenum film deposition. The analysis focused on the film's phase, morphology, chemical bonding states, and resistivity across various thicknesses. X-ray diffraction (XRD) confirmed the presence of polycrystalline BCC planes. Our analyses confirmed the successful growth of the molybdenum metal thin film, which, at a thickness of 10 nm, exhibited a record-low resistivity of approximately 13 μΩ cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信