印刷角度对利用熔融长丝制造的铁增强聚乳酸复合材料微观结构和拉伸性能的影响

IF 3.3 Q2 ENGINEERING, MANUFACTURING
S. Guessasma, S. Belhabib
{"title":"印刷角度对利用熔融长丝制造的铁增强聚乳酸复合材料微观结构和拉伸性能的影响","authors":"S. Guessasma, S. Belhabib","doi":"10.3390/jmmp8020065","DOIUrl":null,"url":null,"abstract":"This work emphasizes an innovative approach utilizing 3D imaging technology based on synchrotron radiation to assess the microstructure of second-phase iron particles and the porous structure within 3D-printed PLA/magnetic iron composites at different printing angles. The study examines how these observations relate to the material’s ductility when processed using fused filament fabrication. In particular, this study examines the impact of one processing parameter, specifically the printing angle, on the microstructure and mechanical behaviour of a polylactic acid (PLA)–iron (PLI) composite designed for magnetic actuation. Fused filament fabrication is employed to produce PLI tensile specimens, with varied printing angles to create different layups. X-ray microtomography is utilized to analyse the microstructure, while tensile mechanical properties are evaluated for all composites, with findings discussed in relation to printing angle conditions. Scanning Electron Microscopy is used to examine the fractography of broken specimens. Results indicate that the printing angle significantly influences the tensile properties and mechanical anisotropy of 3D-printed PLI composites, with an optimal 45°/45° layup enhancing tensile performance. These findings suggest that 3D-printed PLI composites offer a cost-efficient means of producing bio-sourced, light-adaptive materials with intricate magnetic actuation capabilities. By quantifying the modulation of mechanical properties based on printing parameters that influence microstructural arrangement, the research sheds light on a novel aspect of composite material characterization.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Printing Angle on the Microstructure and Tensile Performance of Iron-Reinforced Polylactic Acid Composite Manufactured Using Fused Filament Fabrication\",\"authors\":\"S. Guessasma, S. Belhabib\",\"doi\":\"10.3390/jmmp8020065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work emphasizes an innovative approach utilizing 3D imaging technology based on synchrotron radiation to assess the microstructure of second-phase iron particles and the porous structure within 3D-printed PLA/magnetic iron composites at different printing angles. The study examines how these observations relate to the material’s ductility when processed using fused filament fabrication. In particular, this study examines the impact of one processing parameter, specifically the printing angle, on the microstructure and mechanical behaviour of a polylactic acid (PLA)–iron (PLI) composite designed for magnetic actuation. Fused filament fabrication is employed to produce PLI tensile specimens, with varied printing angles to create different layups. X-ray microtomography is utilized to analyse the microstructure, while tensile mechanical properties are evaluated for all composites, with findings discussed in relation to printing angle conditions. Scanning Electron Microscopy is used to examine the fractography of broken specimens. Results indicate that the printing angle significantly influences the tensile properties and mechanical anisotropy of 3D-printed PLI composites, with an optimal 45°/45° layup enhancing tensile performance. These findings suggest that 3D-printed PLI composites offer a cost-efficient means of producing bio-sourced, light-adaptive materials with intricate magnetic actuation capabilities. By quantifying the modulation of mechanical properties based on printing parameters that influence microstructural arrangement, the research sheds light on a novel aspect of composite material characterization.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8020065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8020065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

这项研究强调了一种创新方法,即利用基于同步辐射的三维成像技术,在不同打印角度下评估第二相铁颗粒的微观结构以及三维打印聚乳酸/磁性铁复合材料的多孔结构。研究探讨了这些观察结果与使用熔融长丝制造工艺加工材料时的延展性之间的关系。本研究特别考察了一个加工参数(尤其是打印角度)对设计用于磁驱动的聚乳酸(PLA)-铁(PLI)复合材料的微观结构和机械性能的影响。采用熔融长丝制造技术生产 PLI 拉伸试样,并通过不同的印刷角度来创建不同的层叠。利用 X 射线显微层析技术分析微观结构,同时评估所有复合材料的拉伸机械性能,并讨论与印刷角度条件相关的研究结果。扫描电子显微镜用于检查断裂试样的断口。结果表明,打印角度对三维打印 PLI 复合材料的拉伸性能和机械各向异性有重大影响,最佳的 45°/45° 层叠方式可提高拉伸性能。这些研究结果表明,三维打印 PLI 复合材料为生产具有复杂磁驱动能力的生物来源光适应材料提供了一种具有成本效益的方法。通过量化基于影响微结构排列的打印参数的机械性能调节,该研究揭示了复合材料表征的一个新方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the Printing Angle on the Microstructure and Tensile Performance of Iron-Reinforced Polylactic Acid Composite Manufactured Using Fused Filament Fabrication
This work emphasizes an innovative approach utilizing 3D imaging technology based on synchrotron radiation to assess the microstructure of second-phase iron particles and the porous structure within 3D-printed PLA/magnetic iron composites at different printing angles. The study examines how these observations relate to the material’s ductility when processed using fused filament fabrication. In particular, this study examines the impact of one processing parameter, specifically the printing angle, on the microstructure and mechanical behaviour of a polylactic acid (PLA)–iron (PLI) composite designed for magnetic actuation. Fused filament fabrication is employed to produce PLI tensile specimens, with varied printing angles to create different layups. X-ray microtomography is utilized to analyse the microstructure, while tensile mechanical properties are evaluated for all composites, with findings discussed in relation to printing angle conditions. Scanning Electron Microscopy is used to examine the fractography of broken specimens. Results indicate that the printing angle significantly influences the tensile properties and mechanical anisotropy of 3D-printed PLI composites, with an optimal 45°/45° layup enhancing tensile performance. These findings suggest that 3D-printed PLI composites offer a cost-efficient means of producing bio-sourced, light-adaptive materials with intricate magnetic actuation capabilities. By quantifying the modulation of mechanical properties based on printing parameters that influence microstructural arrangement, the research sheds light on a novel aspect of composite material characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信