通过准环多边形最大化多边形的面积

Pub Date : 2024-03-27 DOI:10.1556/012.2023.04304
Giuseppina Anatriello, Giovanni Vincenzi
{"title":"通过准环多边形最大化多边形的面积","authors":"Giuseppina Anatriello, Giovanni Vincenzi","doi":"10.1556/012.2023.04304","DOIUrl":null,"url":null,"abstract":"Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Area of Polygons via Quasicyclic Polygons\",\"authors\":\"Giuseppina Anatriello, Giovanni Vincenzi\",\"doi\":\"10.1556/012.2023.04304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2023.04304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2023.04304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据彼得 2003 年的研究成果,四边形的特征如下:"在所有边长为 𝑎, 𝑏, 𝑐 和 𝑑 的四边形中,面积最大的正是循环四边形。在本文中,我们将通过准循环多边形的性质,给出每个多边形的相应特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maximizing the Area of Polygons via Quasicyclic Polygons
Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信