{"title":"通过准环多边形最大化多边形的面积","authors":"Giuseppina Anatriello, Giovanni Vincenzi","doi":"10.1556/012.2023.04304","DOIUrl":null,"url":null,"abstract":"Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Area of Polygons via Quasicyclic Polygons\",\"authors\":\"Giuseppina Anatriello, Giovanni Vincenzi\",\"doi\":\"10.1556/012.2023.04304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2023.04304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2023.04304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing the Area of Polygons via Quasicyclic Polygons
Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.