PBF-LB 制造的硅铝 10Mg 的疲劳性能和冲击韧性

T. Rautio, M. Jaskari, M. Hietala, Aappo Mustakangas, A. Järvenpää
{"title":"PBF-LB 制造的硅铝 10Mg 的疲劳性能和冲击韧性","authors":"T. Rautio, M. Jaskari, M. Hietala, Aappo Mustakangas, A. Järvenpää","doi":"10.4028/p-our7cc","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) has transformed the production of complex geometries and customized components.Powder Bed Fusion with Laser Beam (PBF-LB) is a popular AM technique known for its ability to produce parts with excellent mechanical properties. This study focuses on the characterization of AlSi10Mg, an aluminum alloy widely used in aerospace and automotive industries, manufactured through PBF-LB. The influence of printing orientation on the mechanical properties of the material is investigated. Previous research has shown that PBF-LB manufactured AlSi10Mg can exhibit superior mechanical properties compared to traditional material, but the anisotropic nature of parts produced by PBF-LB can significantly affect their properties. Tensile, impact, and fatigue testing are conducted to assess the mechanical behavior of the printed AlSi10Mg specimens under different loading conditions. Microstructural analysis is performed using Field-Emission Scanning Electron Microscopy (FESEM) equipped with Electron Backscatter Diffraction (EBSD) to examine the microstructural features introduced during the PBF-LB process. The results provide insights into the mechanical behavior of AlSi10Mg produced through PBF-LB and contribute to the design and utilization of components manufactured using this AM technique.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Performance and Impact Toughness of PBF-LB Manufactured AlSi 10Mg\",\"authors\":\"T. Rautio, M. Jaskari, M. Hietala, Aappo Mustakangas, A. Järvenpää\",\"doi\":\"10.4028/p-our7cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) has transformed the production of complex geometries and customized components.Powder Bed Fusion with Laser Beam (PBF-LB) is a popular AM technique known for its ability to produce parts with excellent mechanical properties. This study focuses on the characterization of AlSi10Mg, an aluminum alloy widely used in aerospace and automotive industries, manufactured through PBF-LB. The influence of printing orientation on the mechanical properties of the material is investigated. Previous research has shown that PBF-LB manufactured AlSi10Mg can exhibit superior mechanical properties compared to traditional material, but the anisotropic nature of parts produced by PBF-LB can significantly affect their properties. Tensile, impact, and fatigue testing are conducted to assess the mechanical behavior of the printed AlSi10Mg specimens under different loading conditions. Microstructural analysis is performed using Field-Emission Scanning Electron Microscopy (FESEM) equipped with Electron Backscatter Diffraction (EBSD) to examine the microstructural features introduced during the PBF-LB process. The results provide insights into the mechanical behavior of AlSi10Mg produced through PBF-LB and contribute to the design and utilization of components manufactured using this AM technique.\",\"PeriodicalId\":507685,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-our7cc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-our7cc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粉末床激光束熔融(PBF-LB)是一种流行的快速成型技术,因其能够生产出具有优异机械性能的零件而闻名。本研究重点关注通过 PBF-LB 制造的 AlSi10Mg 的表征,这是一种广泛应用于航空航天和汽车行业的铝合金。研究了印刷方向对材料机械性能的影响。先前的研究表明,与传统材料相比,PBF-LB 制造的 AlSi10Mg 可以表现出更优越的机械性能,但 PBF-LB 制造的零件的各向异性会显著影响其性能。为了评估印刷 AlSi10Mg 试样在不同加载条件下的机械性能,我们进行了拉伸、冲击和疲劳测试。使用配备电子背散射衍射(EBSD)的场发射扫描电子显微镜(FESEM)进行微结构分析,以检查 PBF-LB 过程中引入的微结构特征。研究结果有助于深入了解通过 PBF-LB 生产的 AlSi10Mg 的机械性能,并有助于设计和利用这种 AM 技术制造的部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Performance and Impact Toughness of PBF-LB Manufactured AlSi 10Mg
Additive manufacturing (AM) has transformed the production of complex geometries and customized components.Powder Bed Fusion with Laser Beam (PBF-LB) is a popular AM technique known for its ability to produce parts with excellent mechanical properties. This study focuses on the characterization of AlSi10Mg, an aluminum alloy widely used in aerospace and automotive industries, manufactured through PBF-LB. The influence of printing orientation on the mechanical properties of the material is investigated. Previous research has shown that PBF-LB manufactured AlSi10Mg can exhibit superior mechanical properties compared to traditional material, but the anisotropic nature of parts produced by PBF-LB can significantly affect their properties. Tensile, impact, and fatigue testing are conducted to assess the mechanical behavior of the printed AlSi10Mg specimens under different loading conditions. Microstructural analysis is performed using Field-Emission Scanning Electron Microscopy (FESEM) equipped with Electron Backscatter Diffraction (EBSD) to examine the microstructural features introduced during the PBF-LB process. The results provide insights into the mechanical behavior of AlSi10Mg produced through PBF-LB and contribute to the design and utilization of components manufactured using this AM technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信