利用并行处理优化增强型拓扑主动网模型

Ranjita Akash Asati, M. M. Raghuwanshi, K. R. Singh
{"title":"利用并行处理优化增强型拓扑主动网模型","authors":"Ranjita Akash Asati, M. M. Raghuwanshi, K. R. Singh","doi":"10.32985/ijeces.15.4.4","DOIUrl":null,"url":null,"abstract":"In numerous clinical applications that support the diagnosis and treatment planning of a broad variety of disorders, medical image segmentation is essential. Medical picture segmentation using the Enhanced Extended Topological Active Net (EETAN) model has proven to be successful in correctly identifying structures. This study suggests a novel way to combine the best clustering techniques and parallel processing approaches to maximize the segmentation performance of the EETAN model. The Probabilistic Depth Search Optimization (PDSO) Algorithm, which makes the parallel searching technique to find the ideal contour set, is responsible for this. This work implements parallel processing and ideal clustering to improve the EETAN model's performance in medical image segmentation. Performance metrics like accuracy, precision, recall, dice similarity, and computational time are used for a comparison study. The results demonstrate the notable enhancements attained by employing parallel processing and effective clustering.","PeriodicalId":507791,"journal":{"name":"International journal of electrical and computer engineering systems","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Enhanced Extended Topological Active Nets Model Using Parallel Processing\",\"authors\":\"Ranjita Akash Asati, M. M. Raghuwanshi, K. R. Singh\",\"doi\":\"10.32985/ijeces.15.4.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In numerous clinical applications that support the diagnosis and treatment planning of a broad variety of disorders, medical image segmentation is essential. Medical picture segmentation using the Enhanced Extended Topological Active Net (EETAN) model has proven to be successful in correctly identifying structures. This study suggests a novel way to combine the best clustering techniques and parallel processing approaches to maximize the segmentation performance of the EETAN model. The Probabilistic Depth Search Optimization (PDSO) Algorithm, which makes the parallel searching technique to find the ideal contour set, is responsible for this. This work implements parallel processing and ideal clustering to improve the EETAN model's performance in medical image segmentation. Performance metrics like accuracy, precision, recall, dice similarity, and computational time are used for a comparison study. The results demonstrate the notable enhancements attained by employing parallel processing and effective clustering.\",\"PeriodicalId\":507791,\"journal\":{\"name\":\"International journal of electrical and computer engineering systems\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrical and computer engineering systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.15.4.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical and computer engineering systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.15.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在支持各种疾病诊断和治疗计划的众多临床应用中,医学图像分割至关重要。使用增强拓扑主动网(EETAN)模型进行医学图像分割已被证明能成功地正确识别结构。本研究提出了一种结合最佳聚类技术和并行处理方法的新方法,以最大限度地提高 EETAN 模型的分割性能。概率深度搜索优化算法(PDSO)就是利用并行搜索技术找到理想轮廓集的方法。这项工作采用并行处理和理想聚类技术来提高 EETAN 模型在医学图像分割中的性能。准确度、精确度、召回率、骰子相似度和计算时间等性能指标被用于比较研究。结果表明,采用并行处理和有效聚类后,EETAN 模型的性能显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Enhanced Extended Topological Active Nets Model Using Parallel Processing
In numerous clinical applications that support the diagnosis and treatment planning of a broad variety of disorders, medical image segmentation is essential. Medical picture segmentation using the Enhanced Extended Topological Active Net (EETAN) model has proven to be successful in correctly identifying structures. This study suggests a novel way to combine the best clustering techniques and parallel processing approaches to maximize the segmentation performance of the EETAN model. The Probabilistic Depth Search Optimization (PDSO) Algorithm, which makes the parallel searching technique to find the ideal contour set, is responsible for this. This work implements parallel processing and ideal clustering to improve the EETAN model's performance in medical image segmentation. Performance metrics like accuracy, precision, recall, dice similarity, and computational time are used for a comparison study. The results demonstrate the notable enhancements attained by employing parallel processing and effective clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信