利用人工神经网络和 NARX 算法测量锂-镍-锰-钴电池的充电状态

Divya. R, K. K, R. S, Raja. S.P
{"title":"利用人工神经网络和 NARX 算法测量锂-镍-锰-钴电池的充电状态","authors":"Divya. R, K. K, R. S, Raja. S.P","doi":"10.32985/ijeces.15.4.1","DOIUrl":null,"url":null,"abstract":"The battery's SoC is a crucial variable since it reflects its performance. An accurate estimation of SoC protects the battery, prevents overcharging or discharge, and extends its life time. Since most of the traditional methods use complex equations, ANN has been implemented to reduce the complications and provide better accuracy. In this research, Li-NMC with capacity rating of 2000mAh is used for the estimation of SoC. In this paper, Feedforward Neural Network (FNN) algorithm and Nonlinear Auto-Regressive network with exogenous inputs (NARX) have been used for designing a neural network model. Here, the performance matrixes of both neural network models have been compared and analyzed with the same dataset.","PeriodicalId":507791,"journal":{"name":"International journal of electrical and computer engineering systems","volume":"19 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of State of Charge of Lithium-Nickel Manganese Cobalt Battery using Artificial Neural Network and NARX Algorithm\",\"authors\":\"Divya. R, K. K, R. S, Raja. S.P\",\"doi\":\"10.32985/ijeces.15.4.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The battery's SoC is a crucial variable since it reflects its performance. An accurate estimation of SoC protects the battery, prevents overcharging or discharge, and extends its life time. Since most of the traditional methods use complex equations, ANN has been implemented to reduce the complications and provide better accuracy. In this research, Li-NMC with capacity rating of 2000mAh is used for the estimation of SoC. In this paper, Feedforward Neural Network (FNN) algorithm and Nonlinear Auto-Regressive network with exogenous inputs (NARX) have been used for designing a neural network model. Here, the performance matrixes of both neural network models have been compared and analyzed with the same dataset.\",\"PeriodicalId\":507791,\"journal\":{\"name\":\"International journal of electrical and computer engineering systems\",\"volume\":\"19 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrical and computer engineering systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.15.4.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical and computer engineering systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.15.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电池的 SoC 是一个关键变量,因为它反映了电池的性能。准确估算 SoC 可以保护电池,防止过度充电或放电,并延长其使用寿命。由于大多数传统方法都使用复杂的方程,因此采用了 ANN 来减少复杂性并提供更好的准确性。本研究使用额定容量为 2000mAh 的锂离子电池来估算 SoC。本文采用前馈神经网络(FNN)算法和外生输入非线性自回归网络(NARX)来设计神经网络模型。本文使用相同的数据集对两种神经网络模型的性能矩阵进行了比较和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of State of Charge of Lithium-Nickel Manganese Cobalt Battery using Artificial Neural Network and NARX Algorithm
The battery's SoC is a crucial variable since it reflects its performance. An accurate estimation of SoC protects the battery, prevents overcharging or discharge, and extends its life time. Since most of the traditional methods use complex equations, ANN has been implemented to reduce the complications and provide better accuracy. In this research, Li-NMC with capacity rating of 2000mAh is used for the estimation of SoC. In this paper, Feedforward Neural Network (FNN) algorithm and Nonlinear Auto-Regressive network with exogenous inputs (NARX) have been used for designing a neural network model. Here, the performance matrixes of both neural network models have been compared and analyzed with the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信