开发用于中子散射样品环境装置的高电压电极

Guoliang Sun, Tingting Guo, Bao Yuan, Xiaojing Yang, Guang Wang
{"title":"开发用于中子散射样品环境装置的高电压电极","authors":"Guoliang Sun, Tingting Guo, Bao Yuan, Xiaojing Yang, Guang Wang","doi":"10.3390/instruments8020026","DOIUrl":null,"url":null,"abstract":"The sample environment is essential to neutron scattering experiments as it induces the sample under study into a phase or state of particular interest. Various sample environments have been developed, yet the high-voltage electric field has rarely been documented. In this study, Bruce electrodes with various sectional geometries and chamber sizes were examined by using simulation modeling based on ANSYS Maxwell. A large uniform field region where samples would sit could be achieved in the planar region for all specifications, but the size of the region and the field strength varied with the gap distance between electrodes. The edging effect was inherently observed even for bare electrodes, about 1.7% higher in the sinusoidal region than the planar region, and was significantly deteriorated when a chamber was applied. This effect, however, presented an exponential decrease as the minimum distance between the electrode edge and the chamber shell increased. A compromise between the spatial confinement and the achievable field (strength and uniform region) could be reached according to the unique applicability of neutron instruments. This research provides a theoretical basis for the subsequent design and manufacturing of high-voltage sample environment devices.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices\",\"authors\":\"Guoliang Sun, Tingting Guo, Bao Yuan, Xiaojing Yang, Guang Wang\",\"doi\":\"10.3390/instruments8020026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sample environment is essential to neutron scattering experiments as it induces the sample under study into a phase or state of particular interest. Various sample environments have been developed, yet the high-voltage electric field has rarely been documented. In this study, Bruce electrodes with various sectional geometries and chamber sizes were examined by using simulation modeling based on ANSYS Maxwell. A large uniform field region where samples would sit could be achieved in the planar region for all specifications, but the size of the region and the field strength varied with the gap distance between electrodes. The edging effect was inherently observed even for bare electrodes, about 1.7% higher in the sinusoidal region than the planar region, and was significantly deteriorated when a chamber was applied. This effect, however, presented an exponential decrease as the minimum distance between the electrode edge and the chamber shell increased. A compromise between the spatial confinement and the achievable field (strength and uniform region) could be reached according to the unique applicability of neutron instruments. This research provides a theoretical basis for the subsequent design and manufacturing of high-voltage sample environment devices.\",\"PeriodicalId\":507788,\"journal\":{\"name\":\"Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments8020026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

样品环境对中子散射实验至关重要,因为它能将所研究的样品诱导到特别感兴趣的相或状态。目前已开发出各种样品环境,但高压电场却鲜有记录。在本研究中,通过使用基于 ANSYS Maxwell 的模拟建模,对具有不同截面几何形状和腔室尺寸的布鲁斯电极进行了研究。在所有规格的平面区域中,都能实现样品所在的大均匀场区域,但该区域的大小和场强随电极之间的间隙距离而变化。即使是裸电极也会产生边缘效应,正弦区域的边缘效应比平面区域高出约 1.7%。然而,随着电极边缘与腔室外壳之间最小距离的增加,这种效应呈指数下降。根据中子仪器的独特适用性,可以在空间限制和可实现场(强度和均匀区域)之间达成折中。这项研究为后续设计和制造高压样品环境装置提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices
The sample environment is essential to neutron scattering experiments as it induces the sample under study into a phase or state of particular interest. Various sample environments have been developed, yet the high-voltage electric field has rarely been documented. In this study, Bruce electrodes with various sectional geometries and chamber sizes were examined by using simulation modeling based on ANSYS Maxwell. A large uniform field region where samples would sit could be achieved in the planar region for all specifications, but the size of the region and the field strength varied with the gap distance between electrodes. The edging effect was inherently observed even for bare electrodes, about 1.7% higher in the sinusoidal region than the planar region, and was significantly deteriorated when a chamber was applied. This effect, however, presented an exponential decrease as the minimum distance between the electrode edge and the chamber shell increased. A compromise between the spatial confinement and the achievable field (strength and uniform region) could be reached according to the unique applicability of neutron instruments. This research provides a theoretical basis for the subsequent design and manufacturing of high-voltage sample environment devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信