基于增强型神经网络的物联网语义大数据分析方法

IF 0.9 Q4 TELECOMMUNICATIONS
Chongke Wang
{"title":"基于增强型神经网络的物联网语义大数据分析方法","authors":"Chongke Wang","doi":"10.1002/itl2.524","DOIUrl":null,"url":null,"abstract":"<p>Due to the growth of neural networks, the semantic big data analysis method can classify images at the pixel level, which is very suitable for the needs of IoT. In semantic big data analysis methods, the DeepLab algorithm is an improved and highly accurate algorithm based on enhanced neural networks. However, the DeepLab algorithm does not fully utilize global information, resulting in poor performance for complex scenes. Therefore, this article makes improvements by introducing a global context information module and providing prior information of complex scenes in images. It extracts global information and merges with original features. It improves the expression ability of features. This global context can enhance the accuracy of semantic big data analysis method, and an attention mechanism is designed. The experimental results display that the improved DeepLab semantic big data analysis method based on self-attention and global context module has good average pixel accuracy and average intersection to union ratio performance on the Pascal VOC 2012 dataset. And the improvement effect is significant.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semantic big data analysis method based on enhanced neural networks in IoT\",\"authors\":\"Chongke Wang\",\"doi\":\"10.1002/itl2.524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the growth of neural networks, the semantic big data analysis method can classify images at the pixel level, which is very suitable for the needs of IoT. In semantic big data analysis methods, the DeepLab algorithm is an improved and highly accurate algorithm based on enhanced neural networks. However, the DeepLab algorithm does not fully utilize global information, resulting in poor performance for complex scenes. Therefore, this article makes improvements by introducing a global context information module and providing prior information of complex scenes in images. It extracts global information and merges with original features. It improves the expression ability of features. This global context can enhance the accuracy of semantic big data analysis method, and an attention mechanism is designed. The experimental results display that the improved DeepLab semantic big data analysis method based on self-attention and global context module has good average pixel accuracy and average intersection to union ratio performance on the Pascal VOC 2012 dataset. And the improvement effect is significant.</p>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于神经网络的发展,语义大数据分析方法可以对图像进行像素级分类,非常适合物联网的需求。在语义大数据分析方法中,DeepLab 算法是一种基于增强型神经网络的改进型高精度算法。然而,DeepLab 算法没有充分利用全局信息,导致复杂场景下的性能较差。因此,本文通过引入全局上下文信息模块并提供图像中复杂场景的先验信息来进行改进。它能提取全局信息并与原始特征合并。它提高了特征的表达能力。这种全局上下文可以提高语义大数据分析方法的准确性,并设计了一种关注机制。实验结果表明,基于自我关注和全局上下文模块的改进型 DeepLab 语义大数据分析方法在 Pascal VOC 2012 数据集上具有良好的平均像素精度和平均交集与联合比性能。而且改进效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semantic big data analysis method based on enhanced neural networks in IoT

Due to the growth of neural networks, the semantic big data analysis method can classify images at the pixel level, which is very suitable for the needs of IoT. In semantic big data analysis methods, the DeepLab algorithm is an improved and highly accurate algorithm based on enhanced neural networks. However, the DeepLab algorithm does not fully utilize global information, resulting in poor performance for complex scenes. Therefore, this article makes improvements by introducing a global context information module and providing prior information of complex scenes in images. It extracts global information and merges with original features. It improves the expression ability of features. This global context can enhance the accuracy of semantic big data analysis method, and an attention mechanism is designed. The experimental results display that the improved DeepLab semantic big data analysis method based on self-attention and global context module has good average pixel accuracy and average intersection to union ratio performance on the Pascal VOC 2012 dataset. And the improvement effect is significant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信