求解非线性方程的新优化迭代算法

Dhyan R. Gorashiya, Rajesh C. Shah
{"title":"求解非线性方程的新优化迭代算法","authors":"Dhyan R. Gorashiya, Rajesh C. Shah","doi":"10.59400/jam.v2i1.477","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to propose a new iterative algorithm (scheme or method) for solving algebraic and transcendental equations considering fixed point and an initial guess value on the x-axis. The concepts of slope of a line and Taylor series are used in the derivation. The algorithm has second-order convergence and requires two function evaluations in each step, which shows that it is optimal with computational efficiency index 1.414 and informational efficiency 1. The validity of the algorithm is examined by solving some examples and their comparisons with the Newton’s method.","PeriodicalId":504292,"journal":{"name":"Journal of AppliedMath","volume":"76 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new optimal iterative algorithm for solving nonlinear equations\",\"authors\":\"Dhyan R. Gorashiya, Rajesh C. Shah\",\"doi\":\"10.59400/jam.v2i1.477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to propose a new iterative algorithm (scheme or method) for solving algebraic and transcendental equations considering fixed point and an initial guess value on the x-axis. The concepts of slope of a line and Taylor series are used in the derivation. The algorithm has second-order convergence and requires two function evaluations in each step, which shows that it is optimal with computational efficiency index 1.414 and informational efficiency 1. The validity of the algorithm is examined by solving some examples and their comparisons with the Newton’s method.\",\"PeriodicalId\":504292,\"journal\":{\"name\":\"Journal of AppliedMath\",\"volume\":\"76 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of AppliedMath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59400/jam.v2i1.477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v2i1.477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一种新的迭代算法(方案或方法),用于求解代数方程和超越方程,并考虑 x 轴上的定点和初始猜测值。在推导过程中使用了直线斜率和泰勒级数的概念。该算法具有二阶收敛性,每一步需要两次函数求值,这表明该算法是最优的,计算效率指数为 1.414,信息效率为 1。通过求解一些例子及其与牛顿法的比较,检验了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new optimal iterative algorithm for solving nonlinear equations
The aim of this paper is to propose a new iterative algorithm (scheme or method) for solving algebraic and transcendental equations considering fixed point and an initial guess value on the x-axis. The concepts of slope of a line and Taylor series are used in the derivation. The algorithm has second-order convergence and requires two function evaluations in each step, which shows that it is optimal with computational efficiency index 1.414 and informational efficiency 1. The validity of the algorithm is examined by solving some examples and their comparisons with the Newton’s method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信