{"title":"混合物实验 Kronecker 模型的模型稳健优化设计","authors":"M. K. Panda","doi":"10.3329/ijss.v24i1.72016","DOIUrl":null,"url":null,"abstract":"In comparison to Scheffè’s canonical polynomial models (S-models), the Kronecker models (K-models) for mixture experiments are symmetric, compact in notation, and based on the Kronecker algebra of vectors and matrices. Further, there is a corresponding transition from S-models to K-models in the form of model re-parameterization. In the literature, it has been recommended to use second-degree K-models in practice compared to the widely used second-degree S-models especially when the moment matrix is of an ill-conditioning type. The motivation of the present article is to discriminate between K-models and S-models in terms of the model-robust D- and A-optimality criteria. These optimality criteria are discussed when there is uncertainty in selecting an appropriate model out of two rival models for a mixture experiment.\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 31-48","PeriodicalId":512956,"journal":{"name":"International Journal of Statistical Sciences","volume":"92 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Robust Optimal Designs for Kronecker Model for Mixture Experiments\",\"authors\":\"M. K. Panda\",\"doi\":\"10.3329/ijss.v24i1.72016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In comparison to Scheffè’s canonical polynomial models (S-models), the Kronecker models (K-models) for mixture experiments are symmetric, compact in notation, and based on the Kronecker algebra of vectors and matrices. Further, there is a corresponding transition from S-models to K-models in the form of model re-parameterization. In the literature, it has been recommended to use second-degree K-models in practice compared to the widely used second-degree S-models especially when the moment matrix is of an ill-conditioning type. The motivation of the present article is to discriminate between K-models and S-models in terms of the model-robust D- and A-optimality criteria. These optimality criteria are discussed when there is uncertainty in selecting an appropriate model out of two rival models for a mixture experiment.\\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 31-48\",\"PeriodicalId\":512956,\"journal\":{\"name\":\"International Journal of Statistical Sciences\",\"volume\":\"92 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Statistical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/ijss.v24i1.72016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/ijss.v24i1.72016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model Robust Optimal Designs for Kronecker Model for Mixture Experiments
In comparison to Scheffè’s canonical polynomial models (S-models), the Kronecker models (K-models) for mixture experiments are symmetric, compact in notation, and based on the Kronecker algebra of vectors and matrices. Further, there is a corresponding transition from S-models to K-models in the form of model re-parameterization. In the literature, it has been recommended to use second-degree K-models in practice compared to the widely used second-degree S-models especially when the moment matrix is of an ill-conditioning type. The motivation of the present article is to discriminate between K-models and S-models in terms of the model-robust D- and A-optimality criteria. These optimality criteria are discussed when there is uncertainty in selecting an appropriate model out of two rival models for a mixture experiment.
International Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 31-48