Ilmentite - Geikielite 固溶体的拉曼光谱分析

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
L. Breitenfeld, M. Dyar, Leif Tokle, Kevin Robertson
{"title":"Ilmentite - Geikielite 固溶体的拉曼光谱分析","authors":"L. Breitenfeld, M. Dyar, Leif Tokle, Kevin Robertson","doi":"10.2138/am-2023-9262","DOIUrl":null,"url":null,"abstract":"\n Ilmenite (Fe2+TiO3) and geikielite (MgTiO3) are important terrestrial minerals relevant to the geology of the Earth, the Moon, Mars, and meteorite samples. Raman spectroscopy is a powerful technique that allows for mineral cation determination for the ilmenite — geikielite solid solution. We report on a sample suite of nine samples within the ilmenite — geikielite solid solution and provide context for their quantitative interpretation. We compare a univariate Raman peak position model for predicting ilmenite composition with a multivariate machine learning model. The univariate model is currently recommended, though the multivariate model may become superior if the data set size is increased. This study lays the groundwork for quantifying Fe (ilmenite) and Mg (geikielite) within oxides minerals using a cheap, portable, and efficient technology like Raman spectroscopy.","PeriodicalId":7768,"journal":{"name":"American Mineralogist","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Raman Spectroscopy of the Ilmentite — Geikielite Solid Solution\",\"authors\":\"L. Breitenfeld, M. Dyar, Leif Tokle, Kevin Robertson\",\"doi\":\"10.2138/am-2023-9262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ilmenite (Fe2+TiO3) and geikielite (MgTiO3) are important terrestrial minerals relevant to the geology of the Earth, the Moon, Mars, and meteorite samples. Raman spectroscopy is a powerful technique that allows for mineral cation determination for the ilmenite — geikielite solid solution. We report on a sample suite of nine samples within the ilmenite — geikielite solid solution and provide context for their quantitative interpretation. We compare a univariate Raman peak position model for predicting ilmenite composition with a multivariate machine learning model. The univariate model is currently recommended, though the multivariate model may become superior if the data set size is increased. This study lays the groundwork for quantifying Fe (ilmenite) and Mg (geikielite) within oxides minerals using a cheap, portable, and efficient technology like Raman spectroscopy.\",\"PeriodicalId\":7768,\"journal\":{\"name\":\"American Mineralogist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Mineralogist\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/am-2023-9262\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/am-2023-9262","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

钛铁矿(Fe2+TiO3)和镁钛铁矿(MgTiO3)是与地球、月球、火星和陨石样本地质有关的重要陆地矿物。拉曼光谱是一种功能强大的技术,可用于确定钛铁矿-黝帘石固溶体的矿物阳离子。我们报告了钛铁矿-黝帘石固溶体中的九个样品套件,并提供了定量解释的背景。我们比较了预测钛铁矿成分的单变量拉曼峰位模型和多变量机器学习模型。目前推荐使用单变量模型,但如果数据集的规模扩大,多变量模型可能会更优越。这项研究为利用拉曼光谱这种廉价、便携、高效的技术量化氧化物矿物中的铁(钛铁矿)和镁(geikielite)奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Raman Spectroscopy of the Ilmentite — Geikielite Solid Solution
Ilmenite (Fe2+TiO3) and geikielite (MgTiO3) are important terrestrial minerals relevant to the geology of the Earth, the Moon, Mars, and meteorite samples. Raman spectroscopy is a powerful technique that allows for mineral cation determination for the ilmenite — geikielite solid solution. We report on a sample suite of nine samples within the ilmenite — geikielite solid solution and provide context for their quantitative interpretation. We compare a univariate Raman peak position model for predicting ilmenite composition with a multivariate machine learning model. The univariate model is currently recommended, though the multivariate model may become superior if the data set size is increased. This study lays the groundwork for quantifying Fe (ilmenite) and Mg (geikielite) within oxides minerals using a cheap, portable, and efficient technology like Raman spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Mineralogist
American Mineralogist 地学-地球化学与地球物理
CiteScore
5.20
自引率
9.70%
发文量
276
审稿时长
1 months
期刊介绍: American Mineralogist: Journal of Earth and Planetary Materials (Am Min), is the flagship journal of the Mineralogical Society of America (MSA), continuously published since 1916. Am Min is home to some of the most important advances in the Earth Sciences. Our mission is a continuance of this heritage: to provide readers with reports on original scientific research, both fundamental and applied, with far reaching implications and far ranging appeal. Topics of interest cover all aspects of planetary evolution, and biological and atmospheric processes mediated by solid-state phenomena. These include, but are not limited to, mineralogy and crystallography, high- and low-temperature geochemistry, petrology, geofluids, bio-geochemistry, bio-mineralogy, synthetic materials of relevance to the Earth and planetary sciences, and breakthroughs in analytical methods of any of the aforementioned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信